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ABSTRACT The large state space of gene genealogies is a major hurdle for inference methods based on Kingman’s coalescent. Here,
we present a new Bayesian approach for inferring past population sizes, which relies on a lower-resolution coalescent process that we
refer to as “Tajima’s coalescent.” Tajima’s coalescent has a drastically smaller state space, and hence it is a computationally more
efficient model, than the standard Kingman coalescent. We provide a new algorithm for efficient and exact likelihood calculations for
data without recombination, which exploits a directed acyclic graph and a correspondingly tailored Markov Chain Monte Carlo
method. We compare the performance of our Bayesian Estimation of population size changes by Sampling Tajima’s Trees (BESTT)
with a popular implementation of coalescent-based inference in BEAST using simulated and human data. We empirically demonstrate
that BESTT can accurately infer effective population sizes, and it further provides an efficient alternative to the Kingman’s coalescent.
The algorithms described here are implemented in the R package phylodyn, which is available for download at https://github.com/
JuliaPalacios/phylodyn.
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MODELING gene genealogies from an alignment of se-
quences (timed and rooted bifurcating trees reflecting

the ancestral relationships among sampled sequences), is a
key step in coalescent-based inference of evolutionary parame-
ters such as effective population sizes. In the neutral coales-
cent model without recombination, observed sequence
variation is produced by a stochastic process of mutation
acting along the branches of the gene genealogy
(Watterson 1975; Kingman 1982a), which is modeled as a
realization of the coalescent point process at a neutral non-
recombining locus. In the coalescent point process, the rate of
coalescence (the merging of two lineages into a common
ancestor at some time in the past) is a function that varies
with time, and it is inversely proportional to the effective

population size at time t, NðtÞ (Kingman 1982b; Slatkin
and Hudson 1991; Donnelly and Tavaré 1995). Our goal is
to infer ðNðtÞÞt$ 0, which we will refer to as the “effective
population size trajectory.”

Multiple methods have been developed to infer ðNðtÞÞt$ 0
using the standard coalescent model with or without recom-
bination. Some of these methods infer ðNðtÞÞt$ 0 from sum-
mary statistics such as the sample frequency spectrum (SFS)
(Bhaskar et al. 2015; Terhorst et al. 2017); however, the SFS
is not a sufficient statistic for inferring ðNðtÞÞt$ 0 (Sainudiin
et al. 2011). Other methods have been proposed that directly
use molecular sequence alignments at a completely linked
locus, i.e., without recombination (Griffiths and Tavaré
1996; Kuhner and Smith 2007; Minin et al. 2008; Li and
Durbin 2011; Drummond et al. 2012; Gill et al. 2013;
Palacios and Minin 2013). Our approach is of this type. Still
other methods account for recombination across larger geno-
mic segments (Li and Durbin 2011; Sheehan et al. 2013;
Schiffels and Durbin 2014; Palacios et al. 2015). In spite of
their variety, all these methods must contend with two major
challenges: (1) choosing a prior distribution or functional
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form for ðNðtÞÞt$ 0, and (2) integrating over the large hidden
state space of genealogies. For example, several previous ap-
proaches have assumed exponential growth (Griffiths and
Tavaré 1996; Kuhner et al. 1998; Kuhner and Smith 2007),
in which case the estimation of ðNðtÞÞt$ 0 is reduced to the
estimation of one or two parameters. In general, the functional
form of ðNðtÞÞt$ 0 is unknown and needs to be inferred. A
commonly used naive nonparametric prior on ðNðtÞÞt$ 0 is a
piecewise linear or constant function defined on time intervals
of constant or varying sizes (Heled and Drummond 2008;
Sheehan et al. 2013; Schiffels and Durbin 2014). The specifi-
cation of change points in such time-discretized effective pop-
ulation size trajectories is inherently difficult because it can
lead to runaway behavior or large uncertainty in ðN̂ðtÞÞt$ 0.
These difficulties can be avoided by the use of Gaussian process
priors in a Bayesian nonparametric framework, allowing accu-
rate and precise estimation (Gill et al. 2013; Palacios andMinin
2013; Lan et al. 2015; Palacios et al. 2015). More precisely, the
autocorrelationmodeledwith theGaussian process avoids run-
away behavior and large uncertainty in ðN̂ðtÞÞt$0.

The second challenge for coalescent-based inference of
ðNðtÞÞt$ 0 is the integration over the hidden state space of
genealogies for large sample sizes. Given molecular sequence
data Y at a single nonrecombining locus and amutationmodel
with parameter m, current methods rely on calculating the
marginal likelihood function PrðY

��ðNðtÞÞ t$0;mÞ by integrat-
ing over all possible coalescence and mutation events. Under
the infinite sites mutation model without intralocus recombi-
nation (Watterson 1975), this integration requires a computa-
tionally expensive importance sampling technique or Markov
Chain Monte Carlo (MCMC) techniques (Griffiths and Tavaré
1994a; Stephens and Donnelly 2000; Hobolth et al. 2008; Wu
2010; Gronau et al. 2011). Moreover, a maximum likelihood
estimate of ðNðtÞÞt$ 0 cannot be explicitly obtained; instead, it
is obtained by exploring a grid of parameter values (Tavaré
2004). For finite sites mutation models, current methods ap-
proximate themarginal likelihood function by integrating over
all possible genealogies via MCMC methods [Equation 1;
Kuhner (2006); Drummond et al. (2012)]. In both cases, the
marginal likelihood may be expressed as

Pr
�
YjðNðtÞÞt$0;m

�
¼

Z
PrðYjg;mÞPr

�
gjðNðtÞÞt$0

�
dg; (1)

in which Prð�Þ is used to denote both the probability of dis-
crete variables and the density of continuous variables. The
integral above involves an ðn2 1Þ-dimensional integral over
n2 1 coalescent times and a sum over all possible tree topol-
ogies with n leaves. Therefore, these methods require a very
large number of MCMC samples, and exploration of the pos-
terior space of genealogies continues to be an active area of
research (Kuhner et al. 1998; Rannala and Yang 2003;
Drummond et al. 2012; Whidden and Matsen 2015; Aberer
et al. 2016).

Currentmethods rely on the Kingmann-coalescent process
to model the sample’s ancestry. However, the state space of

genealogical trees grows superexponentially with the num-
ber of samples, making inference computationally challeng-
ing for large sample sizes. In this study, we develop a
Bayesian nonparametric model that relies on Tajima’s coales-
cent, a lower-resolution coalescent process with a drastically
smaller state space than that of Kingman’s coalescent. In
particular, we approximate the posterior distribution
PrððNðtÞÞt$ 0; g

T ; t jY;mÞ, where gT corresponds to the Taji-
ma’s genealogy of the sample (see Figure 1A and Tajima’s
genealogies), ðlog  NðtÞÞt$ 0 has a Gaussian process prior with
precision hyperparameter t that influences the smoothness
of the resulting trajectory, and mutations occur according
to the infinite sites model of Watterson (1975). This results
in a new efficient method for inferring ðNðtÞÞt$ 0 called
Bayesian Estimation by Sampling Tajima’s Trees (BESTT),
with a drastic reduction in the state space of genealogies.
Using simulated data, we show that BESTT can accurately
infer effective population size trajectories and that it pro-
vides a more efficient alternative than Kingman’s coalescent
models.

Next, we start with an overview of BESTT, detail our
representation of molecular sequence data, and define the
Tajima coalescent process. We then introduce a new aug-
mented representation of sequence data as a directed acyclic
graph (DAG). This representation allows us to both calculate
the conditional likelihood under the Tajima coalescent
model and to sample tree topologies compatible with the
observed data. We then provide an algorithm for likeli-
hood calculations and develop an MCMC approach to effi-
ciently explore the state space of unknown parameters.
Finally, we compare our method to other methods imple-
mented in Bayesian Evolutionary Analysis Sampling Trees
(BEAST) (Drummond et al. 2012) and estimate the effec-
tive population size trajectory from human mitochondrial
DNA (mtDNA) data. We close with a discussion of possible
extensions, and limitations of the proposed model and
implementation.

Materials and Methods

Overview of BESTT

Our objective in the implementation of BESTT is to estimate
the posterior distribution of model parameters by replacing
Kingman’s genealogy with Tajima’s genealogy gT. A Tajima’s
genealogy does not include labels at the tips (Figure 1): we
do not order individuals in the sample but label only the
lineages that are ancestral to at least two individuals (that
is, we only label the internal nodes of the genealogy). Replac-
ing Kingman’s genealogy by Tajima’s genealogy in our poste-
rior distribution exponentially reduces the size of the state
space of genealogies (Figure 1B). To compute PrðYjgT ;mÞ,
the conditional likelihood of the data conditioned on a Taji-
ma’s genealogy, we assume the infinite sites model of muta-
tions, and leverage a DAG representation of sequence data
and genealogical information. Note that the overall
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likelihood, Equation 1, will differ only by a combinatorial
factor from the corresponding likelihood under the Kingman
coalescent. Our DAG represents the data with a gene tree
(Griffiths and Tavaré 1994a), constructed via a modified ver-
sion of the perfect phylogeny algorithm of Gusfield (1991).
This provides an economical representation of the uncer-
tainty, and conditional independences induced by the model
and the observed data.

Under the infinite sites mutation model, there is a one-
to-one correspondence between observed sequence data
and the gene tree of the data (Gusfield 1991) (Summarizing
sequence data Y as haplotypes and mutation groups and
Representing Yh3m as a gene tree). We further augment
the gene tree representation with the allocation of the num-
ber of observed mutations along the Tajima’s genealogy
to generate a DAG (An augmented data representation
using directed acyclic graphs). The conditional likelihood
PrðYjgT ;mÞ is then calculated via a recursive algorithm
that exploits the auxiliary variables defined in the DAG
nodes, marginalizing over all possible mutation allocations
(Computing the conditional likelihood). We approximate the
joint posterior distribution PrððNðtÞÞt$0; g

T ; t jY;mÞ via an
MCMC algorithm using Hamiltonian Monte Carlo for sam-
pling the continuous parameters of the model and a novel
Metropolis–Hastings algorithm for sampling the discrete
tree space.

Summarizing sequence data Y as haplotypes and
mutation groups

Let the data consist of n fully linked haploid sequences or
alignments of nucleotides at s segregating sites sampled from
n individuals at time t ¼ 0 (the present). Note that any labels
we affix to the individuals are arbitrary in the sense that they
will not enter into the calculation of the likelihood. We fur-
ther assume the infinite sites mutation model of Watterson
(1975) with mutation parameter m and known ancestral
states for each of the sites. Then, we can encode the data into
a binary matrix Y of n rows and s columns with elements
yi; j 2 f0; 1g, where 0 indicates the ancestral allele.

To calculate the Tajima’s conditional likelihood
PrðY j gT ;mÞ, we first record each haplotype’s frequency and
group repeated columns to formmutation groups; a mutation
group corresponds to a shared set of mutations in a subset of
the sampled individuals. We record the cardinality of each
mutation group (i.e., the number of columns that show each
mutation group). In Figure 2A, there are two columns labeled
“b,” corresponding to two segregating sites that have the
exact same pattern of allelic states across the sample. Fur-
ther, two individuals carry the derived allele of mutation
group b, so in this case the frequency of haplotype 7 and
the cardinality of mutation group b are both equal to 2. Like-
wise, haplotype 4 has frequency 1 and carries five mutations
that are split into mutation groups “a,” “f,” and “g” (the latter
is not shown in Figure 2A, but appears in Figure 2B) of re-
spective cardinalities 1, 3, and 1. We denote the number of
haplotypes in the sample as h, the number of mutation
groups as m, and the representation of Y as haplotypes and
mutation groups as Yh3m.

Representing Yh3m as a gene tree

Yh3m (Figure 2A) can alternatively be represented as a gene
tree or perfect phylogeny (Gusfield 1991; Griffiths and
Tavaré 1994b). This representation relies on our assumption
of the infinite sites mutation model in which, if a site mutates
once in a given lineage, all descendants of that lineage also
have the mutation and no other individuals carry that muta-
tion. The gene tree is a graphical representation of the hap-
lotypes (as tips) arranged by their patterns of shared
mutations. The haplotype data summarized in Figure 2A cor-
respond to the gene tree given in Figure 2B. Details of the
correspondence between haplotype data and gene tree are
listed below, and an additional example is given in Figure E1
(Appendix E).

A gene tree for a matrix Yh3m of h haplotypes and m mu-
tation groups is a rooted tree T with h leaves and at least m
edges, such that (Figure 2B):

1. Each row of Yh3m corresponds to exactly one leaf of T .
The black numbers at leaf nodes in Figure 2B are the
haplotype frequencies.

2. Each mutation group of Yh3m is represented by exactly
one edge of T , which is labeled accordingly (letters in
Figure 2, A and B). The red numbers along edges in Figure

Figure 1 For a sample of size n, the number of Tajima’s genealogies is
superexponentially fewer compared to the number of Kingman’s gene-
alogies. (A) A Kingman’s genealogy and a Tajima’s genealogy for n ¼ 8.
A Kingman’s genealogy (left) comprises a vector of coalescent times and
the labeled topology; the number of possible labeled topologies for a
sample of size n is n!ðn2 1Þ!=2n21. A Tajima’s genealogy (right) com-
prises a vector of coalescent times and a ranked tree shape. In both cases,
coalescent events are ranked from 2 at time t2 to n at time tn. Coalescent
times are measured from the present (time 0) back into the past. (B) The
numbers of labeled topologies and ranked tree shapes (formulas provided
in Tajima’s genealogies) for different values of the sample size, n.
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2B give the cardinality of each mutation group (i.e., the
number of segregating sites in this group; see Figure 2A).
Some external edges (edges subtending leaves) may not
be labeled, indicating that they do not carry additional
mutations to their parent edge. This happens when the
other edges emanating from the parent node necessarily
correspond to other mutation groups.

3. Edges are placed in the gene tree in such a way that each
“path” from the root to a leaf fully describes a haplotype.

Edges corresponding to sharedmutations between several
haplotypes are closest to the root. For example, in Figure
2B, haplotype 4 corresponds to the leaf at which one ar-
rives starting from the root and going along edges a, g, and
f; in contrast, haplotype 7 corresponds to the leaf at which
one arrives going from the root along edge b. Thus, the
labels and the numbers associated with the edges along
the unique path from the root to a leaf exactly specify a
row of Yh3m.

Figure 2 Data structures employed by our method, Bayesian Estimation of population size changes by Sampling Tajima’s Trees (BESTT), for calculating
the conditional likelihood of the data. (A) Compressed data representation Yh3m of n ¼ 16 sequences and s ¼ 18 (columns, only the first 10 of which
are shown), comprised of nine haplotypes and 13 mutation groups. Rows correspond to haplotypes and each polymorphic site is labeled by its mutation
group fa;b; c; . . . ;mg. (B) Gene tree representation of the data in (A). Red numbers indicate the cardinality of each mutation group [number of columns
with the same label in (A)]. Black letters indicate the mutation group [column labels in (A)], and black numbers indicate the frequency of the
corresponding haplotype. (C) A Tajima’s genealogy compatible with the gene tree in (B). Internal nodes are labeled according to order of coalescent
events from the root to the tips. Coalescent event i happens at time ti and branches are labeled bi (see An augmented data representation using
directed acyclic graphs for details). (D) A Directed Acyclic Graph (DAG) representation of the gene tree in (B) together with allocation of mutation groups
along the branches of the Tajima’s genealogy in (C). V I denotes the set of internal nodes and VL the set of leaf nodes. A detailed description of the DAG
is given in An augmented data representation using directed acyclic graphs.
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Dan Gusfield’s perfect phylogeny algorithm (Gusfield
1991) transforms the sequence data Yh3m into a gene tree
and this transformation is one-to-one. We note that the
perfect phylogeny T or gene tree is not the same as the
genealogy g. While a genealogy is a bifurcating tree of
individuals of the sample, the gene tree is a multifurcating
tree of haplotypes.

Tajima’s genealogies

Our method of computing the probability of the recoded data,
Yh3m, uses ranked tree shapes rather than fully labeled histo-
ries. We refer to these ranked tree shapes as Tajima’s geneal-
ogies but note they have also been called unlabeled rooted trees
(Griffiths and Tavaré 1995) and evolutionary relationships
(Tajima 1983). In Tajima’s genealogies, only the internal
nodes are labeled and they are labeled by their order in time.
Tajima’s genealogies encode theminimum information needed
to compute the probability of data Yh3m, which consists of
nested sets of mutations, without any approximations. In Fig-
ure 1A for example, it matters only that mutation group e
occurs on a subgroup of the individuals who carry mutation
group “a,” and that this is different from the subgroups carrying
c, d, and f. No other labels matter because individuals are
exchangeable in the population model we assume.

This represents a dramatic coarsening of tree space com-
pared to the classical leaf-labeled binary trees of Kingman’s
coalescent. The number of possible ranked tree shapes for a
sample of size n corresponds to the n-th term of the sequence
A000111 of Euler zig-zag numbers (Disanto and Wiehe
2013) whereas the number of labeled binary tree topologies
is n!ðn2 1Þ!=2n21. As can be seen from Figure 1B, this pro-
vides a much more efficient way to integrate over the key
hidden variable, the unknown gene genealogy of the sample,
when computing likelihoods.

Wemodel this hidden variable using the vintaged and sized
coalescent (Sainudiin et al. 2015), which corresponds exactly
to this coarsening of Kingman’s coalescent. As can be seen in
Figure 1A, we assign vintages/labels 2 through n starting at
the root of the tree and moving toward the present, so that
the node created by the final splitting event, which is also the
first coalescence event looking back in the ancestry of the
sample, is labeled n. We write tk for the time of node k,
measured from the present back into the past. We set
tnþ1 :¼ 0 to be the present time. Then during the interval
½tkþ1; tkÞ the sample has exactly k extant ancestors, for
k 2 f2; . . . ; ng.

The coarsening of the tree topology does not change the
law of the times between two coalescence events. Thus,
conditional on the effective population size trajectory
ðNðtÞÞt$ 0 and the time tkþ1 at which the number of ancestors
to the sample decreases to k, the distribution of the time
during which the sample has k ancestors is given by

Pr
�
tk 2 tkþ1jtkþ1; ðNðtÞÞt$0

�
¼ Ck

NðtkÞ
exp

�
2

Z
​
tk

tkþ1

Ck
NðtÞ dt

�
(2)

(Slatkin and Hudson 1991), where Ck ¼
�
k
2

�
. Writing the

density at t ¼ t2; t3; . . . ; tnð Þ of the vector of coalescence times
as a product of conditional densities, we obtain

Pr
�
tjðNðtÞÞt$0

�
¼

Yn
k¼2

Pr
�
tk 2 tkþ1 j tkþ1; ðNðtÞÞt$ 0

�
: (3)

We use a lower triangular matrix denoted F to represent
Tajima’s genealogies; see Appendix A. The probability of a
ranked tree shape was derived independently in Sainudiin
et al. (2015) and Palacios et al. (2015). Specifically, for every
ranked tree shape F with n leaves,

PrðFÞ ¼ 2n2c21

ðn2 1Þ!; (4)

where c is the number of cherries in F (i.e., nodes subtending
two leaves; c ¼ 3 in Figure A1A). Note that this probability
is independent of the effective population size trajectory
since the choice of the pair of lineages that coalesce during
an event is independent of ðNðtÞÞt$0 (recall that in King-
man’s coalescent, the coalescing pair is chosen uniformly at
random among all possible pairs). Since the distribution of
Tajima’s genealogies gT ¼ ðF; tÞ conditional on ðNðtÞÞt$ 0

can be factored as the product of the probability of the
ranked tree shape F and the coalescent times density, we
arrive at

Pr
�
gT jðNðtÞÞt$ 0

�
¼ 2n2c21

ðn2 1Þ!
Yn
k¼2

�
Ck

NðtkÞ
exp

�
2

Z
​
tk

tkþ1

Ck
NðtÞ   dt

��
: (5)

An augmented data representation using directed
acyclic graphs

AkeycomponentofBESTT is the calculationof the conditional
likelihood Pr YjgT ;mð Þ. We compute the conditional likeli-
hood recursively over a DAG, D. Our DAG exploits the gene
tree representation T of the data (Figure 2B), incorporates
the branch length information of the Tajima’s genealogy
gT(Figure 2C), and facilitates the recursive allocation of mu-
tations to the branches of gT . Here, we detail the construction
of the DAG.

We construct the DAG using three pieces of information:
the observed gene tree T , a given Tajima’s genealogy gT and a
latent allocation of mutations along the branches of the Taji-
ma’s genealogy (Figure 3). An allocation refers to a possible
mapping (compatible with the data) of the observed numbers
of mutations (red numbers in Figure 2B) to branches in the
Tajima’s genealogy. Figure 3A shows one possible mapping
for the Tajima’s genealogy in Figure 2C; usually this mapping
is not unique. Our construction of D enables an efficient re-
cursive consideration of all possible allocations of muta-
tions along gT when computing the conditional likelihood
PrðYjgT ;mÞ.

Estimation by Sampling Tajima’s Trees 971



Constructing the DAG D: The graph structure of our DAG
D ¼ fZ; Eg (Figure 2D) with nodes Z and edges E is con-
structed from a gene tree T . The number of internal nodes
in the DAG D is the same as the number of internal nodes in
T . However, sister leaf nodes in T with the same number of
descendants are grouped together in D and leaf nodes
descending from edges with no mutations are treated as
singletons grouped together in D. For example, the leaves
in Figure 2B subtending from edges i and j are grouped into
Z6 in Figure 2D, as they both have haplotype frequency 2.
However, the leaves subtending from the e and f edges are
not grouped (and correspond to Z8 and Z9 in the DAG Fig-
ure 2D) since they have respective haplotype frequencies
2 and 1. We label the root node of D as Z0 and increase the
index i of each node Zi from top to bottom, moving left to
right. For i, j, we assign a directed edge Ei;j if the node in T
corresponding to Zi is connected to the node in T corre-
sponding to Zj. The index set of internal nodes in D is
denoted by VI and the index set of leaf nodes is denoted
by VL.

Information carried by the nodes in D: Each node in D
represents a vector, Zj, which includes number of descen-
dants, number of mutations, and latent allocation of muta-
tions. Although the number of descendants and number of
mutations are part of the observed data, the allocation of
mutations can be seen as a random variable; for ease of ex-
position, we use capital letters to denote all three types of
information. We define the vector Zj as follows:

Zj ¼

8<
:

ðDj;Xj;AjÞ j 2 VI;
ðDj;AjÞ j ¼ 0 ðthe root nodeÞ;
ðDj;XjÞ j 2 VL;

where Dj denotes the number of descendants of (i.e., of sam-
pled sequences subtended by) node Zj, Xj denotes the number
ofmutations separating Zj from its parent node, andAj denotes
the allocation of mutations along gT (described in detail be-
low). The number of descendants Dj is thus the number of
individuals/sequences descending from node Zj (this informa-
tion is part of T ). For internal nodes, Xj records the cardinality
of a mutation group, represented as a red number along the
edge Ei;j of T in Figure 2B, where i is the index of the parent
node of Zj. Leaf nodes in D may correspond to more than one
leaf node in T , namely any sister nodes with the same number
of descendants. In this case, Xj is a vector with the cardinalities
of the corresponding mutation groups (see for example node
Z6 in Figure 3B). To keep theDAG construction simple,we only
allow groupings of leaf nodes and not of internal nodes with
identical descendants carrying identical numbers ofmutations.
We note that, in principle, it would be possible to compress the
number of internal nodes of the DAG by exploiting all the
symmetries observed in the data.

Allocation of mutation groups along gT: The latent alloca-
tion variables fAjg determine a possible correspondence be-
tween subtrees in gT and nodes in D; in particular, Aj

indicates the branches in gT that subtend the subtrees corre-
sponding to nodes fZkg if fZkg are child nodes of Zj.

Allocationsofmutations tobranches areusually not unique
and computation of the conditional likelihood PrðY j gT ;mÞ
requires summing over all possible allocations. In Figure 3A
we show one such possible allocation of the mutation groups
of the gene tree in Figure 2B along the Tajima’s genealogy in
Figure 2C. For example, mutation group a in Figure 2B with
cardinality 1 (number in red) is a mutation observed in seven
individuals (sum of black numbers of leaves descending from

Figure 3 Directed Acyclic Graph (DAG) construction. (A) A Tajima’s genealogy from Figure 2C with added allocation of mutations shown in red. (B) The
corresponding augmented DAG with allocation of mutations. At the root Z0, there are no mutations by convention. Node Z0 has 16 descendants across
three subtrees of 7;7 and two descendants, corresponding to nodes Z1; Z2; and Z3. These three subtrees subtend from b5;b4, and b14, respectively, in gT

(A). Node Z1 corresponds to the tree subtending from b5 of size 7 with X1 ¼ 1 mutation along b5, and subtends three subtrees from ðb12;b9Þ and b10.
Subtrees subtending from ðb12;b9Þ are grouped together in leaf node Z4 because they both have two descendants and have the same parent node. When
leaf nodes represent more than one tree, such as Z4 in Figure 4B, the random variable Xj is the vector Xj ¼ ðXj;1;Xj;2; . . . ;Xj;sjÞ that denotes the number of
mutations along the branches that subtends from the tree node j that have Dj descendants, and sj is the number of edges subtending from Zj .
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edge marked a). This same mutation group, a, is shown as a
red number 1 in Figure 3A allocated to branch b5. If Zj is an
internal node, the number of mutations Xj is denoted as a
vector of length 1. If Zj is a leaf node, Xj can be a vector of
length.1. Details on notation for allocations can be found in
Appendix B.

Computing the conditional likelihood

Under the infinite sites mutation model, mutations are super-
imposed independently on the branches of gT as a Poisson
process with rate m. To compute PrðY j gT ;mÞ ¼ PrðT j gT ;mÞ,
we marginalize over the latent allocation information in the
DAG D; that is, we sum over all possible mappings of muta-
tions in T to branches in gT as follows:

Pr
�
Y j gT ;m

�
¼

X
A0

X
A1

. . .
X
AnI

Pr
�
D j gT ;m

�

¼
X
A0

X
A1

. . .
X
AnI

Pr
�
Z0; . . . ; ZnIþnL j gT ;m

�

¼
X
A0

X
A1

. . .
X
AnI

YnIþnL

i¼1

Pr
	
Zi j ZpaðiÞ; gT ;m




where nI ¼ jVIj, nL ¼ jVLj, paðiÞ denotes the index of the par-
ent of node i in D, and we set PðZ0

��gT ;mÞ ¼ 1 because it is
assumed that there are nomutations above the root node and
the length of the root branch l2 ¼ 0. Writing L for the tree
length of gT (i.e., the sum of the lengths of all branches of gT)
and factoring out a global factor e2mL (due to the Poisson
distribution of mutations across the genealogy) from each
of the above products over i 2 f1; . . . ; nI þ nLg, we have

where Pðxi; kÞ is the set of all permutations of xi ¼
fxi1; . . . ; xikg divided into mi groups of different sizes. The
number of different permutations of the k values of xi divided
into mi groups of sizes k1; . . . ; kmi is

jPðxi; kÞj ¼
k!Qmi

j¼1
kj!

: (6)

For example, assume that xi ¼ f2; 2; 2; 0; 3; 3g and apaðiÞ ¼
ðb3; b4; b5; b6; b7; b8Þ with branch lengths fl3; l4; l5; l6; l7; l8g.
In this case, k1 ¼ 3 because there will be three branches with

two mutations, k2 ¼ 1 because there will be one branch with
no mutations, and k3 ¼ 2 because there will be two branches
with three mutations. The number of permutations of k ¼ 6
mutations groups divided into mi ¼ 3 groups with cardinal-
ities 2; 0; 3 of sizes 3; 1; 2 is 6!=ð3!1!2!Þ ¼ 60.

The conditional likelihood PrðY
��gT ;mÞ is calculated via a

backtracking algorithm (Appendix C). The algorithmmargin-
alizes the allocations by traversing the DAG from the tips to
the root. The pseudocode and an example can be found in
Appendix C.

The case of unknown ancestral states

Up to now, we have assumed that the ancestral state was
known at every segregating site. The representation of the
data Y that we use in this case records the cardinalities of
each mutation group and the genealogical relations between
these groups, but does not assign labels to the sequences.
Hence, in the terminology of Griffiths and Tavaré (1995),
our data corresponds to an unlabeled rooted gene tree.

When the ancestral types are not known, the data (now
denoted Y0) may be represented as an unlabeled unrooted
gene tree. By the remark following Equation 1 in Griffiths and
Tavaré (1995), if s is the number of segregating sites, then
there are at most sþ 1 unlabeled rooted gene trees that cor-
respond to the unrooted gene tree of the observed data
ðRðY0ÞÞ. By the law of total probability [see also Equation
10 in Griffiths and Tavaré (1995)], the conditional likelihood
of Y0 can be written as the sum over all compatible unlabeled
rooted gene trees YðiÞ of the probability of YðiÞ conditionally
on gT . That is:

Pr Y0 j gT ;m
� �

¼
XR Y0ð Þ

i¼1

P Y ið Þ j gT ;m
	 


; (7)

where each of the YðiÞ corresponds to a unique unla-
beled rooted gene tree compatible with the unrooted
gene tree Y0 and RðY0Þ denotes the number of those un-
labeled rooted gene trees. In the following sections,
we shall assume that the ancestral type at each site is
known.

Pr
	
Zi ¼ zi j zpaðiÞ; gT ;m




¼

(
Pr
	
Xi ¼ xi j apaðiÞ ¼ bj; gT ;m



} ðmljÞxi if jxij ¼ 1;

PrðXi ¼ ðxi1; . . . ; xikÞÞ j apaðiÞ ¼ ðbj1; . . . ; bjkÞ; gT ;m
�
}

X
s2Pðxi;kÞ

Yk
m¼1

ðmljmÞ
sm if jxij ¼ k. 1;
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Bayesian inference of the effective population
size trajectory

Our posterior distribution of interest is

Pr g; gT ; t
��Y;m� �

} Pr Y
��gT ;m� �

Pr gT
��g� �

Pr gjtð ÞPr tð Þ; (8)

where logN tð Þð Þt$0 ¼ g tð Þð Þt$ 0 � GP 0;C tð Þð Þ has a Gauss-
ian process prior with mean 0 and covariance function CðtÞ
(Rasmussen and Williams 2006). This specification ensures
ðNðtÞÞt. 0 is nonnegative. In our implementation, we assume
a regular geometric random walk prior, that is, g1 ¼
logNðt*1Þ; . . . ; gB ¼ logNðt*BÞ at B regularly spaced time points
in ½0;T� with

Cov
h
gi; gj

i
¼ Cov

�
logN

	
t*i


; logN

	
t*j

�

¼ t  min
	
t*i ; t

*
j



:

The parameter t is a length-scale parameter that controls the de-
gree of smoothness of the random walk. We place a g prior with
parameters a ¼ 0:01 and b ¼ 0:001 on t, reflecting our lack of
prior information in terms of high variance about the smoothness
of the logarithm of the effective population size trajectory.

We approximate the posterior distribution of model pa-
rameters via an MCMC sampling scheme. Model parameters
are sampled in blocks within a random scan Metropolis-
within-Gibbs framework. Our algorithm initializes with the
corresponding Tajima genealogy of the UPGMA estimated
tree implemented in phangorn (Schliep 2011). Given an ini-
tial genealogy, our algorithm initializes Ne and t with the
method of Palacios and Minin (2012) implemented in phylo-
dyn (Karcher et al. 2017). We then proceed to generate: (1) a
sample of the vector of effective population sizes and pre-
cision parameter as described in Split Hamiltonian Monte
Carlo updates of ðg; tÞ, (2) a sample of the vector of coales-
cent times as described inHamiltonianMonte Carlo updates of
coalescent times and Local updates of coalescent times where
we modify a single coalescent time, and (3) a sample of
ranked tree shape as described in Metropolis–Hastings up-
dates for ranked tree shapes in each iteration. To summarize
the effective population size trajectory, we compute the pos-
terior median and 95% credible intervals pointwise at each
grid point in ½0; T̂�, were T̂ is the maximum time to the most
recent common ancestor sampled.

Metropolis–Hastings updates for ranked tree shapes: There
is a large body of literature on local transition proposal distri-
butions for Kingman’s topologies (Kuhner et al. 1998; Rannala
and Yang 2003; Drummond et al. 2012; Whidden and Matsen
2015; Aberer et al. 2016). In this paper, we adapted the local
transition proposal of Markovtsova et al. (2000) to Tajima’s
topologies. We briefly describe the scheme below and provide
a pseudocode algorithm in Appendix C (Algorithm 3).

Given the current state of the chain g; t; gT
� �

¼
g; t; Fn; tf g, we propose a new ranked tree shape F* in two

steps. For step 1, we first sample a coalescent interval ek ¼
ðtkþ1; tkÞ uniformly at random, where k � Uðf3; . . . ; ngÞ.

Note that we will never select the interval ðt3; t2Þ at the top
of the tree (see Figure A1A). Given k, we focus solely on the
coalescent events at times tk and tk21. For step 2, there are
two possible scenarios. Case A: the lineage created at time tk,
labeled k, coalesces at time tk21 (first row of Figure 4A). Case
B: lineage k does not coalesce at time tk21 (Figure 4B). In
Case A, we choose a new pair of lineages at random to co-
alesce at time tk from the three lineages subtending k and
k2 1 (excluding k), and we coalesce the remaining lineage
with k at tk21 (F*n;1 and F*n;2 in Figure 4). In Case B, we invert
the order of the coalescent events; that is, the two lineages
descending from k are set to coalesce at time tk21 and line-
ages descending from k2 1 are set to coalesce at time tk (F*n;3
a in Figure 4). Note that the numerical labels 1; 2; 3 are in-
cluded to clarify the picture: lineages subtending both Case A
and Case B can be either labeled (if there is a vintage sub-
tending that lineage) or not (if there is a singleton). The
transition probability qðF*n

��FnÞ is given by the product of the
probabilities of the two steps. The new ranked tree shape F*n is
accepted with probability given by the Metropolis–Hastings
ratio defined below:

aFn ¼ min 1;
Pr YjF*n; t;m
� �

Pr F*n
� �

q FnjF*n
� �

Pr YjFn; t;mð ÞPr Fnð Þq F*njFn
� �

( )
: (9)

We note that our proposal can result in the same ranked tree
shape. However, we tested alternative proposals that pre-
cluded this event and we did not find any notable difference
in the overall performance of the MCMC algorithm.

Split Hamiltonian Monte Carlo updates of ðg; tÞ: To make
efficient joint proposals of g and t, we use the Split Hamilto-
nian Monte Carlo method proposed by Lan et al. (2015).

Figure 4 Markov moves for topologies. First row: possible coalescent pat-
terns (Case A or Case B) for a given topology Fn. Second row: possible
Markov moves in Case A (F*n;1 and F*n;2) and Case B ðF*n;3Þ. k indexes the
coalescent interval sampled. Numerical labels at the tips are added for con-
venience: conditionally on a given Fn, tips can be labeled (vintage) or not
(singleton). Figure is adapted from Figures 2–4 of Markovtsova et al. (2000).
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Conditioned on gT , the target density becomespðg; tÞ}PrðtjgÞ
PrðgjtÞPrðtÞ. This is the same target density implemented in
Karcher et al. (2017) for fixed coalescent times t.

Hamiltonian Monte Carlo updates of coalescent times:
Given the current state fg; t; gTg ¼ fg; Fn; t; tg, we propose a
new vector of coalescent times with target density
pðt9Þ}PðYjFn; t9;mÞPðt9jgÞ by numerically simulating a Ham-
ilton system with Hamiltonian

Hðlogðt9Þ; sÞ ¼ 2 logðpðlogðt9ÞÞÞ þ 1
2
sTMs; (10)

where s is the momentum vector assumed to be normally
distributed. The system evolves according to:

@s
@x

¼ =logpðlogðt9ÞÞÞ

@t0

@x
¼ Ms: (11)

We use the leapfrogmethod (Neal 2011) with step size e and
a p Poisson with mean 10 distributed number of steps to
simulate the dynamics from time x ¼ 0 to x ¼ pe. Each leap-
frog step of size e follows the trajectory:

sxþe
2
¼ sx þ

e

2
=logpðlogðt0xÞÞÞ 

t0xþe ¼ t0x þ eMsxþe
2

sxþe ¼ sxþe
2
þ e

2
=logpðlogðt0xþeÞÞÞ: (12)

For our implementation, we set the mass matrix M ¼ I, the
identity matrix. We simulate the Hamiltonian dynamics of
the logarithm of times to avoid proposals with negative val-
ues. Solving the equations of the Hamilton system requires
calculating the gradient of the logarithm of the target density
with respect to the vector of log coalescent times. The gradi-
ent of the log conditional likelihood (score function) is cal-
culated at every marginalization step in the algorithm for the
likelihood calculation.

At the beginning of Bayesian inference of the effective pop-
ulation size trajectory, we described how we assume a regular
geometric random walk prior on ðNðtÞÞt$ 0 at B regularly
spaced time points in ½0;T�. Ideally, the window size T must
be at least t2, the time to the most recent common ancestor
(TMRCA). However, t2 is not known. Our initial values of
coalescent times t are obtained from the UPGMA implemen-
tation in phangorn (Schliep 2011) with times properly
rescaled by the mutation rate, and we set T ¼ t2. We initially
discretize the time interval ½0;T� into B intervals of length
T=ðB21Þ. As we generate new samples of t, we expand or
contract our grid according to the current value of t2 by keep-
ing the grid interval length fixed to T=ðB2 1Þ, effectively in-
creasing or decreasing the dimension of g.

Local updates of coalescent times: In addition to Hamilto-
nian Monte Carlo (HMC) updates of coalescent times, we
propose a move of a single coalescent time (excluding the
TMRCA t2) chosen uniformly at random and sampled uni-
formly in the intercoalescent interval; that is, we choose
i � Uðfn; n2 1; . . . ; 3gÞ and t*i � Uðtiþ1; ti21Þ. This is a sym-
metric proposal and the corresponding Metropolis–Hastings
acceptance probability is

at* ¼ min 1;
Pr
�
YjFn; t*;m

�
Pr
�
t*jg

�
PrðYjFn; t;mÞPrðtjgÞ

( )
: (13)

While these updates may seem unnecessary in light of
the Hamiltonian updates of coalescence times (Hamilto-
nian Monte Carlo updates of coalescent times), we ob-
served better performance of our MCMC sampler by
including this additional proposal. One reason may be our
choice of M in Hamiltonian Monte Carlo updates of coalescent
times that does not account for the geometric structure of the
posterior distribution of coalescent times. However, a better
choice of M comes with higher computational burden than a
simple local update of coalescent times.

Multiple independent loci: Thus far, we have assumed our
data consist of a single linked locus of s segregating sites. We
can extend our methodology to l independent loci with si
segregating sites for i ¼ 1; . . . ; l. In this case, our data
Y
!¼ ðY1; . . . ;YlÞ consist of l aligned sequences with elements
f0; 1g, where 0 indicates the ancestral allele as before. We
then jointly estimate the Tajima’s genealogies fgT

i g
l
i¼1, pre-

cision parameter t, and vector of log effective population
sizes g through their posterior distribution:

Pr
	
g;

�
gTi

�l
i¼1; t j Y

!
;m



}

Yl
i¼1

Pr
�
Yi j gTi ;mi

�
Pr
�
gTi jg

�( )

3 Prðg j tÞPrðtÞ: (14)

In Equation 14, we enforce that all loci follow the same
effective population size trajectory but every locus can have
its own mutation rate mi.

Table 1 Empirical measures of performance in the simulations
described in the text

Simulation % ENV SRE MRW

Instantaneous growth (n = 10,s = 31) 96 5.87 124352
Instantaneous growth (n = 10,s = 63) 100 2.15 2296
Instantaneous growth (n = 10,s = 120) 98 0.53 80
Instantaneous growth (n = 25) 90 0.40 3.43
Instantaneous growth (n = 35) 92 0.31 3.16
Constant 100 0.30 1.16
Exponential 100 0.35 5.45
Exponential and constant (n = 10, 1 locus) 100 4.31 22608
Exponential and constant (n = 10, 5 loci) 100 2.37 309.1
Exponential and constant (n = 10, 10 loci) 100 0.16 4.19

% ENV, % envelope measure; MRW, mean relative width; SRE, sum of relative
errors.
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Data availability

The methods presented in this article are implemented in
the open source R package phylodyn (https://github.com/
JuliaPalacios/phylodyn). The data files necessary to repro-
duce both the simulated and real data analyses are provided
with the R package.

Results

The performance of BESTT in applications to
simulated data

We tested our new method, BESTT, on simulated data under
fourdifferentdemographic scenarios.Note that in this section,
NðtÞ is rescaled to the coalescent timescale, meaning that
1=NðtÞ is the pairwise rate of coalescence at time t in the past
relative to the rate at the present time zero. We simulated
genealogies under four different population size trajectories:

1. A period of exponential growth followed by constant size:

N tð Þ ¼ 1 if t 2 ð0; 0:1Þ;
exp 1� 10tð Þ if t 2 ð0:1;NÞ:



(15)

2. A trajector with instantaneous growth:

N tð Þ ¼ 1 if t 2 ð0; 0:05Þ;
0:05 if t 2 ð0:05;NÞ:



(16)

3. Exponential growth: N tð Þ ¼ 25e-5t.
4. A constant trajectory: N tð Þ ¼ 1.

Given a genealogy of length L ¼
Pn

j¼2 jðtj 2 tjþ1Þ, where
tj 2 tjþ1 is the intercoalescent length while there are j line-
ages, we drew the total number of mutations (segregating
sites) s according to a Poisson distribution with parametermL.
We then placed the mutations uniformly at random along the
branches of the genealogy. For each of the s mutations, we
assigned the mutant type to individuals descending from the

branch where the mutation occurred and the ancestral type
otherwise.

We summarize our posterior inference N̂ðtÞ by the poste-
rior median and 95% Bayesian credible intervals (BCIs) after
200 thousand iterations, and thinned every 10 iterations with
100 iterations of burn in. Our initial number of change points
forNðtÞwas set to 50 over the time interval ð0; t2Þ, where t2 is
the initialized time to the most recent common ancestor;
however, over the course of MCMC iterations, this number
could increase or decrease according to the posterior distri-
bution of t2.

Weassess the accuracy andprecision of our estimates using
the sum of relative errors (SRE)

SRE ¼
Xk
i¼1

��N̂ðviÞ2NðviÞ
��

NðviÞ
; (17)

where N̂ðviÞ is the estimated effective population size trajec-
tory at time vi. Second, we computed the mean relative
width (MRW) as

MRW ¼
Xk
i¼1

��N̂upðviÞ2 N̂loðviÞ
��

kNðviÞ
; (18)

where N̂upðviÞ corresponds to the 97.5% upper limit and
N̂loðviÞ corresponds to the 2.5% lower limit of the estimated
posterior distribution ofNðviÞ. In addition, wemeasured how
well the 95% credible intervals cover the truth and compute
the envelope measure, ENV:

ENV ¼
Pk

i¼1 1
�
N̂loðviÞ#NðviÞ# N̂upðviÞ

�
k

(19)

We first simulated three data sets ofn ¼ 10 individualswith an
average number of 100 segregating sites under different types
of population size trajectories: constant, exponential growth,
and instantaneous growth. Results are depicted in the first

Figure 5 Varying the number of segregating sites. Posterior inference from simulated data of n ¼ 10 sequences under a population size trajectory with
instantaneous growth (dashed lines). s is the number of segregating sites. Posterior medians are depicted as solid black lines and 95% Bayesian credible
intervals are depicted by shaded areas.
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column of Figure 8. Posterior medians and 95% credible inter-
vals are shown as black curves and gray shaded areas, respec-
tively. The trajectories used to simulate the data are depicted as
dashed lines. Figure 8 shows that our BESTT method recovers
the constant and exponential growth trajectories verywell, but
the instantaneous growth scenario is less accurate and with
high uncertainty (wide credible intervals). In all three cases,
our envelope measure is. 95%. Performance measures on all
simulations are summarized in Table 1.

We analyzed the effect of increasing the number of segre-
gating sites, the number of samples, and the number of
independent genealogies on posterior inference with BESTT.
In all three cases, we expect our method to better recover the
truth. Figure 5 shows our results on simulated data under a
population size trajectory with instantaneous growth (Equa-
tion 16) of n ¼ 10 individuals with 31, 63, and 120 segregat-
ing sites. As expected, our method recovers the truth with
higher precision (MRW) and accuracy (SRE) when we in-
crease the number of segregating sites. Increasing the num-
ber of segregating sites may result in more constraints in the
gene tree. For n ¼ 10, there are 7936 possible ranked tree
shapes; however, for the data sets simulated with 31, 63, and
102 segregating sites, there are only 2582632, 2670634,
and 55667 ranked tree shapes compatible with their corre-
sponding gene trees. These numbers were estimated by im-
portance sampling (Cappello and Palacios 2019).

As another performance assessment, we simulated data
sets from a population size trajectory with instantaneous
growth with varying numbers of samples. We simulated data
sets with n ¼ 10, 25, and 35 samples with 215 expected num-
bers of segregating sites. Our results depicted in Figure 6
show that our method performs better in terms of SRE and
MRE when the number of samples increases. Similarly, pre-
cision (MRW) and accuracy (SRE) increases when inference
is done from a larger number of independent data sets. Fi-
nally, Figure 7 shows our results from 1, 5, and 10 data sets
simulated from1, 5, and 10 independent genealogies of 10 in-

dividuals with a population size trajectory of growth followed
by a constant period (Equation 15). As expected, our meth-
od’s performance substantially increases by increasing the
number of independent data sets.

Comparison to other methods

To our knowledge, there is no other method for inferring
(variable) effective population size over time from haplotype
data that assumes the infinite sites mutation and a nonpara-
metric prior on NðtÞ; therefore, we cannot directly compare
our method to others. Moreover, our method is the only one
that explicitly averages over Tajima genealogies instead of
Kingman genealogies. BEAST (Drummond et al. 2012) is a
program for analyzing molecular sequences that uses MCMC
to average over the Kingman tree space and it is therefore a
good reference for comparison to our method. We compared
our results to the Extended Bayesian Skyline Plot method
(EBSP) (Heled and Drummond 2008) and the Skygrid
method (Gill et al. 2013) implemented in BEAST.

Since the infinite sites mutation model is not implemented
in BEAST, we first converted our simulated sequences of 0s
and 1s to sequences of nucleotides by sampling s ancestral
nucleotides uniformly on fA;T;C;Gg and assigning one of
the remaining three types uniformly at random to be the
mutant type. This corresponds to a simulation of the Jukes–
Cantor mutation model (Jukes and Cantor 1969) that is cur-
rently implemented in BEAST.

We compare the results of BESTT to those of BEAST EBSP
and Skygrid (Drummond et al. 2005, 2012) in Figure 8. We
note that results from BEAST are generated from 10 million
iterations and thinned every 1000 iterations, while results
from BESTT are generated from 200 thousand iterations.

We compared our point estimates N̂ðtÞ from all methods to
the ground truth for each simulation (Table 2). In two cases,
BESTT has better envelope than BEAST. For the exponential
growth simulation (Figure 8, second row) the BEAST EBSP
result has better SRE and MRW, however, the credible

Figure 6 Varying the number of samples under a population size trajectory with instantaneous growth. Posterior inference from simulated data of
n ¼ 10, 25, and 35 sequences under the population size trajectory with instantaneous growth. Shaded areas correspond to 95% credible intervals, solid
lines to posterior medians, and dashed lines to the truth.
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intervals are uneven with very wide intervals at the ends. In
all cases, the BEAST Skygrid results have wider credible in-
tervals. For the instantaneous growth simulation (Figure 8,
third row), BEAST EBSP did not generate many simulations
beyond the time point 0.06; for this reason, we recomputed
the performance statistics for the overlapping time interval
ð0; 0:06Þ. In this interval, BESTT outperforms both methods
implemented in BEAST in terms of envelope and SRE. The
last column of Figure 8 shows the posterior distribution of the
TMRCA. For the case of constant population size, the true
value of the TMRCA is contained in the 95% BCI estimated
with BESTT but it is not contained in the 95% BCIs estimated
with the two methods implemented in BEAST. In the expo-
nential growth simulation, the true TMRCA is contained in
the 95% BCIs estimated with the three methods and the in-
stant growth method; the true TMRCA is not contained in the
95% BCIs of the three methods.

We note that BEAST Bayesian Skygrid (Gill et al. 2013) is a
more comparable method to BESTT since it assumes Gauss-
ian process priors on log NðtÞ like BESTT.

Computational performance of BESTT

BESTT approximates the posterior distribution (a)
PrððNðtÞÞt$ 0; g

T ; t
��Y;mÞ, where gT is a Tajima’s genealogy

instead of (b) PrððNðtÞÞt$ 0; g; t
��Y*;mÞ, where g is a King-

man’s genealogy and Y* is the labeled data, to estimate
ðNðtÞÞt. 0. These two posterior distributions are the same
when every individual of the sample has its own private mu-
tation group and no shared mutation groups. Otherwise, the
number of Tajima’s trees compatible with observed data Y,
i.e., Tajima’s trees gT such that PrðgT

��YÞ.0, is smaller than
the number of Kingman’s trees compatible with observed
labeled data Y* (Cappello and Palacios 2019). That is, we
are required to estimate the posterior of a smaller number
of trees. For this reason, we argue that Tajima’s coalescent is

a more efficient model than Kingman’s coalescent for estimat-
ing the posterior distribution of ðNðtÞÞt$ 0. However, a single
conditional likelihood calculation Pr Y

�� gT ;m� �
requires the

sumover all possible allocation ofmutation groups to branches
of gT . Our algorithm only accounts for allocations constrained
by the DAG and the ranked tree shape of gT . For the data
depicted in Figure 2, A and B and gT of Figure 2C, there are
only eight different possible allocation paths of all mutation
groups to branches. In Appendix C, we detail how our algo-
rithm finds these paths. The number of paths depends on the
number of subtrees with the same family size path in the DAG
and in the ranked tree shape. In the best case, our algorithm
will find a path in OðnoÞ, where no is the number of nodes in
the gene tree. In general, the number of allocation pathswill be
much smaller than the number of labeled trees compatible
with a ranked tree shape. In our implementation, we estimate
posterior (a) with MCMC. The main difference between our
MCMC algorithm and the MCMC algorithm implemented in
BEAST is the tree topology sampler. While our MCMC algo-
rithm explores the space of ranked tree shapes with local move
proposals of ranked tree shapes, BEAST explores the space of
labeled, ranked tree shapes with local move proposals of la-
beled trees. A formal assessment of the efficiency of ourMCMC
algorithm and its comparison to the MCMC implementation in
BEAST is beyond the scope of this manuscript and subject of
future research.

Inferring human population demography from mtDNA

Weselectedn ¼ 35 samples ofmtDNAat random from107Yor-
uban individuals available from the 1000 Genomes Project
phase 3 (1000 Genomes Project Consortium et al. 2015). We
retained the coding region, 5762 16; 024 bp, according to the
rCRS reference of human mtDNA (Anderson et al. 1981;
Andrews et al. 1999) and removed 38 insertions/deletions. Of
the 260 polymorphic sites, we retained 240 sites compatible

Figure 7 Multiple independent data sets. Posterior inference from simulated data of n ¼ 10 sequences under exponential followed by constant
trajectory (Equation 15). (A) Inference from a single simulated data set, (B) from five independently simulated data sets, and (C) from 10 independently
simulated data sets. Shaded areas correspond to 95% credible intervals, solid black lines show posterior medians, and dashed lines show the simulated
truth.

978 J. A. Palacios et al.



with the infinite sites mutation model. The final file is available
in https://github.com/JuliaPalacios/phylodyn. To encode our
data as 0s and 1s, we use the inferred root sequence RSRS of
Behar et al. (2012) to define the ancestral type at each site. To
rescale our results in units of years, we assumed amutation rate
per site per year of 1:331028 (Rebolledo-Jaramillo et al.
2014). We compare our results with the Extended Bayesian
Skyline method (Drummond et al. 2012) implemented in
BEAST in Figure 9. When applying BEAST, we assumed the
Jukes–Cantor mutation model. Both methods detect an inflec-
tion point�20 KYA followed by exponential growth. The mean
TMRCA inferred for these YRI mtDNA samples with BESTT is
�170 KYAwith a 95% BCI of 142; 868; 207; 455ð Þ, while the
mean TMRCA inferred with BEAST is �160 KYA with a 95%
BCI of 133; 239; 196; 900ð Þ. In Appendix D, we include two
more comparisons of BESTT and BEAST.

Discussion

The size of emergent sequencing data sets prohibits the use
of standard coalescent modeling for inferring evolutionary

parameters. Themain computational bottleneck of coalescent-
based inference of evolutionary histories lies in the large
cardinality of the hidden state space of genealogies. In the
standard Kingman coalescent, a genealogy is a random la-
beled bifurcating tree that models the set of ancestral rela-
tionships of the samples. The genealogy accounts for the
correlated structure induced by the shared past history of
organisms and explicit modeling of genealogies is fundamen-
tal for learning about the past history of organisms. However,
the genomic era is producing large data sets that requiremore
efficient approaches that efficiently integrate over the hidden
state space of genealogies.

In this manuscript, we show that a lower-resolution co-
alescent model on genealogies, Tajima’s coalescent, can be
used as an alternative to the standard Kingman coalescent
model. In particular, we show that the Tajima coalescent
model provides a feasible alternative that integrates over a
smaller state space than the standard Kingman model. The
main advantage in Tajima’s coalescent is modeling of the
ranked tree topology as opposed to the fully labeled tree
topology, as in Kingman’s coalescent.

Figure 8 Bayesian Estimation of population size changes by Sampling Tajima’s Trees (BESTT) and BEAST comparison. Posterior inference from simulated
data of n ¼ 10 sequences under constant, exponential, and instantaneous growth trajectories (rows) obtained from our method BESTT (first column),
BEAST Extended Bayesian Skyline Plot (EBSP) (second column), and BEAST Skygrid (third column). Shaded areas correspond to 95% credible intervals,
solid black lines show posterior medians, and dashed lines show the simulated truth. In the fourth column, we show the posterior density of the time to
the most recent common ancestor (TMRCA) from the three methods: BESTT (black), BEAST EBSP (blue), and BEAST Skygrid (red). The true value of the
TMRCA is depicted as a vertical dashed line.

Estimation by Sampling Tajima’s Trees 979

https://github.com/JuliaPalacios/phylodyn


A priori, the cardinality of the state space of ranked tree
shapes is much smaller than the cardinality of the state space
of labeled trees. However, in this manuscript we show that
when the Tajima coalescent model is coupled with the infin-
ite sites mutation model, the space of ranked tree shapes is
constrained by the data and the reduction on the cardinality
of the hidden state space of Tajima’s trees is even more pro-
nounced than expected.

To leverage the constraints imposed by the data and the
infinite sites mutationmodel, we apply Dan Gusfield’s perfect
phylogeny algorithm (Gusfield 1991) to represent sequence
alignments as a gene tree. We exploit the gene tree represen-
tation for conditional likelihood calculations and for explor-
ing the state space of ranked tree shapes.

For the calculationof the likelihoodof thedata conditioned
on a given Tajima’s genealogy, we augment the gene tree
representation of the data with the Tajima’s genealogy and
map observed mutations to branches. We define a DAG with
the augmented gene tree. This new representation as a DAG
allows for calculating the likelihood as a backtracking algo-
rithm that transverses the gene tree from the leaves to the
root. Our implementation’s computational bottleneck lies in
the likelihood calculation. Given a Tajima’s genealogy, our
likelihood algorithm sums over all possible allocations of mu-
tation groups to branches. Although this number is generally
much smaller than the number of labeled genealogies, our
algorithm can be further optimized. In future studies, we will
explore a sum-product type of algorithm for the likelihood

calculation. In the present implementation, we are able to
infer effective population size trajectories from samples of
size n � 35 on a regular personal laptop computer within
few hours.

Our statistical framework draws on Bayesian nonparamet-
rics. We place a flexible geometric randomwalk process prior
on the effective population size that allows us to recover
population size trajectories with abrupt changes in simula-
tions. The inference procedure proposed in this manuscript
relies onMCMCmethodswith three largeGibbs blockupdates
of: coalescent times, effective population size trajectory, and
ranked tree shape topology.We use HamiltonianMonte Carlo
updates for continuous random variables—coalescent times
and effective population size—and a Metropolis–Hastings
sampler for exploring the space of ranked tree shapes. For
exploring the genealogical space, Markovtsova et al. (2000)
suggest a joint local proposal for both coalescent times and
topology. Here, we restrict our attention to the topology
alone. A future line of research includes the development of
a joint local proposal of coalescent times and ranked tree
shapes. We also envision that a joint sampler of coalescent
times and effective population size trajectories should im-
prove mixing and convergence.

Our method does not model recombination, population
structure, or selection. It assumes completely linked and
neutral segments from individuals from a single population,
and the infinite sites mutation model. While this model is a
good approximation for some humanmolecular data, it is not
appropriate for modeling molecular data from other organ-
isms such as pathogens and viral populations. Finally, haplo-
type data of many organisms are usually sparse with few
unique haplotypes presented at high frequencies. Since our
algorithm exploits molecular data at the haplotype level, our
proposed method is ideally suited for this scenario where the
space of ranked tree shapes is drastically smaller than the
space of labeled topologies.
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Appendix

Appendix A: Matrix Representation of a Ranked Tree
Shape

Our algorithms exploit the following encoding of a ranked tree
shape by a triangularmatrix of size n3 n, whichwe denote by F
(Figure A1). Recall that, by convention, tnþ1 ¼ 0 and t1 ¼ þN.

First, we declare that Fi;j ¼ 0 if j. i. Next, the number of
lineages through time is encoded on the diagonal of F: Fi;i ¼ i
for i in f2; 3; . . . ; ng. Finally, for j, i, the entry Fi;j denotes the
number of lineages that do not coalesce in the time interval
ðtiþ1; tjÞ; in particular, Fi;1 ¼ 0 and for every i in f2; 3; . . . ; ng,
Fn;i denotes the number of singletons (i.e., external branches
that have not coalesced) in the time interval ðtiþ1; tiÞ (Figure
A1). Other statistics of the ranked tree shape can be expressed
in terms of the correspondingmatrix F. Among them, the num-
ber c of cherries is equal to the number of times that the num-
ber of singletons decreases by two between lines i and i2 1,
since such an event means that the coalescence separating
these two epochs was that of two external branches. That is,

c ¼
Xn
i¼3

1fFn;i2Fn;i21¼2g:

Appendix B

Detailed allocation of mutation groups along gT

The latent allocation random variables fAjg are constrained by
the information in the Tajima’s genealogy gT. In a given gT ,
every subtree is labeled by its ranking from past to present
(Figure A1). Subtree i is subtended by branch bi with length
li, for i ¼ 2; . . . ; n. We will assume that l2, the length of the root
branch, is 0. Let c be the number of cherries (nodes with two
leaves) in gT; the two branches of a given cherry share the same
label bj 2 fbnþ1; . . . ; bnþcg. The actual label of external
branches is arbitrary but, for ease of exposition in our figures,
we first label the cherries’ branches from left to right by
fbnþ1; . . . ; bnþcg; singleton branches are labeled from left to
right by bnþcþ1; . . . ; b2n2c (Figure 2C). As mentioned before,
the length of Xj is the number of the corresponding sister nodes
in T thatwere grouped together in forming node Zj. In this case,
Aj ¼ ðAj;1; . . . ;Aj;jchðjÞjÞ denotes a collection of jchðjÞj vectors of
branch labels in gT subtending the child node subtrees of node
Zj. Aj;1 corresponds to the branch subtending from the leftmost
child node of Zj onD, Aj;2 corresponds to the branch subtending
from the next child node of Zj, etc., and Aj;jchðjÞj corresponds to
the branch subtending from the rightmost child node of Zj onD.
Observe that, since we group some of the leaf nodes in T into a
single node in D, any Aj;k may be a vector of branch labels; for
example A1;1 ¼ ðb12; b9Þ and A1;2 ¼ b10 in Figure 3B.

Appendix C

Algorithms for conditional likelihood calculation
The following two algorithms detail the calculation of
PrðY

�� gT ;mÞ. Y is encoded in GeneTree, the observed data

as a tree structure. Each node in GeneTree has number of
descendants (or lineages) and mutation information at-
tached to it. Tajima’s genealogy gT is encoded as Fpath,
which contains the ranked tree shape Fn, and times, which
contains the vector of coalescent times t multiplied by the
mutation rate m.

Algorithm 1 Calculate LikelihoodðFpath; times;GeneTreeÞ
procedure

Input: GeneTree, FPath
Output: Log Likelihood LL

1: Initiate pool to be the set of leaf nodes of GeneTree with
at least one descendant. Initiate LL and index to be zero.
Initiate current_ path to be empty.

2: Call CalcLL_recursive(LL, index, current_path, Fpath, times,
Genetree).

3: return LL

Algorithm 2 CalcLL_recursive(LL, index, current_ path,
Fpath, times, Genetree) procedure

1: if index ¼ lenðpathÞ {When a complete path node is
found} then

2: for node in tree do
3: Calculate log likelihood based on times and number

of mutations of node in current_ path.
4: Accumulate to total log likelihood LL
5: end for
6: else
7: for node in pool do
8: Check compatibility of the node, according to the

given Fpath.
9: if node is compatible with Fpath then

10: Update node by assigning it to the current step in
Fpath

11: Update pool. If a node has been mapped entirely,
remove node from pool, update its parent node,
and potentially add parent node to pool if parent
node has not been entirely assigned.

12: Append this node to current_ path
13: Call CalcLL_recursive(LL, index 1 1, current_path,

Fpath, Genetree)
14: Restore previous node, pool, and current_ path
15: end if
16: end for
17: end if

To illustrate algorithms1and2,weuseour examplesof Figure
2 and Figure 3. Algorithm 1 initiates the pool with nodes
Z3; Z4; Z6; Z8; Z10. Then, Algorithm 2 cycles through this list.
Assume the first node is Z8. This node has d8 ¼ 2 descendants
and the ancestry is Z8 2 Z5 2 Z1 2 Z0 with sizes:
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22 32 72 16. On the other hand, the first coalescent event
(from present to past) labeled 16 in gT (Figure 3A) has an-
cestry with sizes: 2232 72 16. Therefore, this node is
compatible. The node is removed from the pool, its parent
node added to the pool, and Z8 is assigned to the path. At
this time current_path ¼ Z8 and the pool becomes:
Z3; Z4; Z5; Z6; Z10. The algorithm then cycles through this list
and picks Z10. This node has size ancestry 22 3272 16. On
the other hand the second coalescent event labeled 15 has
size ancestry: 22 3252 72 92 16. Since the node size an-
cestry is contained in the second coalescent event’s size an-
cestry, this node is compatible. The current path becomes
current_path ¼ Z82 Z10 and the pool becomes Z3; Z4;
Z5; Z6; Z7. We continue this procedure until we reach the
path current_path¼ Z8 2 Z102 Z3 2 Z6 2 Z4 2 Z7 2 Z5 2 Z42
Z6 2Z1 2 Z2 2 Z1 2 Z2 2 Z0.

Once a path is found, the algorithm backtracks the path
until there is one compatible node and the path continues to
grow. A sequence of backtracking and growing is the
following:

1. Z8 2 Z10 2 Z3 2 Z6 2 Z4 2 Z7 2 Z5 2 Z4 2 Z6 2 Z1 2
Z2 2 Z1 2 Z2 2 Z0

2. Z8 2 Z10 2 Z3 2 Z6 2 Z4 2 Z7 2 Z5 2 Z4 2 Z6 2
Z1 2 Z2 2 Z1 2 Z2

3. Z8 2 Z10 2 Z3 2 Z6 2 Z4 2 Z7 2 Z5 2 Z4 2 Z6 2 Z1 2
Z2 2 Z1

4. Z8 2 Z10 2 Z3 2 Z6 2 Z4 2 Z7 2 Z5 2 Z4 2 Z6 2 Z1 2 Z2
5. Z8 2 Z10 2 Z3 2 Z6 2 Z4 2 Z7 2 Z5 2 Z4 2 Z6 2 Z1
6. Z8 2 Z10 2 Z3 2 Z6 2 Z4 2 Z7 2 Z5 2 Z4 2 Z6
7. Z8 2 Z10 2 Z3 2 Z6 2 Z4 2 Z7 2 Z5 2 Z4
8. Z8 2 Z10 2 Z3 2 Z6 2 Z4 2 Z7 2 Z5
9. Z8 2 Z10 2 Z3 2 Z6 2 Z4 2 Z7 2 Z5 2 Z6

10. Z8 2 Z10 2Z3 2Z6 2 Z4 2 Z7 2 Z5 2 Z6 2 Z4
11. Z8 2 Z10 2Z3 2Z6 2 Z4 2 Z7 2 Z5 2 Z6
12. Z8 2 Z10 2Z3 2Z6 2 Z4 2 Z7 2 Z5
13. Z8 2 Z10 2Z3 2Z6 2 Z4 2 Z7 2 Z5 2 Z4
14. Z8 2 Z10 2Z3 2Z6 2 Z4 2 Z7 2 Z5 2 Z4 2 Z6
15. Z8 2 Z10 2Z3 2Z6 2 Z4 2 Z7 2 Z5 2 Z4 2 Z6 2 Z1
16. Z8 2 Z10 2Z3 2Z6 2 Z4 2 Z7 2 Z5 2 Z4 2 Z6 2 Z1 2 Z2
17. Z8 2 Z10 2Z3 2Z6 2 Z4 2 Z7 2 Z5 2 Z4 2 Z6 2 Z1 2

Z2 2 Z1
18. Z8 2 Z10 2Z3 2Z6 2 Z4 2 Z7 2 Z5 2 Z4 2 Z6 2

Z1 2 Z2 2 Z1 2 Z0

In the first sequence of steps 128, the path decreases. This
happens because there are no alternative compatible paths at
the point when the sequence starts to grow until step 10. At step
10, the algorithm does not find a compatible way to keep grow-
ing the path so the algorithm starts to backtrack again until step
12. From steps 12 to 18, the algorithm grows the path until a
new complete path has been found. A complete path has the
correspondence of coalescent events to nodes in the gene tree.
The first element of the path Z8 corresponds to the coalescent
event at time t8, the second element of the path Z10 corresponds
to the second coalescent event at time t7. The last element of the
path is Z0 when all sequences coalesce at time t2. In this exam-
ple, the algorithm finds eight paths. Once the paths are found,
the algorithm computes the likelihood and the result is the sum
of the likelihoods of the eight paths.

Figure D1 Posterior inference of female effective
population size from 35 mtDNA samples from Yoru-
ban individuals in the 1000 Genomes Project using
BEAST EBSP (first plot) from all 15,409 sites and the
BEAST EBSP (second plot) from the 240 segregating
sites retained. In both cases, the mutation model as-
sumed is Jukes Cantor (JC). Posterior median curves
are depicted as solid black lines and 95% credible
intervals by shaded regions.

Figure A1 Ranked tree shape. Left: Example of a Tajima’s genealogy
(redrawn from Figure 1A) with coalescent events ranked from 2 at time
t2 to n at time tn. Right: The corresponding Fn matrix, with n ¼ 8, that
encodes the ranked tree shape information of the Tajima’s genealogy on
the left. Fi; j denotes the number of lineages that do not coalesce in the
time interval ðtiþ1; tjÞ. In particular, Fn;i for i in f2;3; . . . ; ng denotes the
number of singletons (external branches that have not coalesced) in the
time interval ðtiþ1; tiÞ.
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Markovian proposal of ranked tree shapes
The following algorithm generates a new ranked tree shape
from a Markovian proposal and outputs the corresponding
transition probabilities. This proposal is used in Metropolis–
Hastings updates for ranked tree shapes.

Algorithm 3 Transition proposals for ranked tree shapes

Input: Fn Output: F*n, qðFn j F*nÞ, qðF*n j FnÞ

1. Set Fn ¼ F*n.

2. Sample with uniform discrete probability a coalescent
event k from the set f3; . . . ; ng Set q1 ¼ 1

n22.

3. If lineage k coalesces at time tk21 (Figure 4, Case A)

If the lineages coalescing at time tk are singletons
(Figure 4, Case A, lineages 1 and 2 in Fn)

(a) No sampling required to distinguish be-
tween two singletons. Set q2 ¼ 1.

(b) Update F*n: merge one singleton with the
lineage coalescing at k2 1 (excluding line-
age k) in Fn, then merge the second single-
ton at time tk21 with lineage k.

(c) Compute the probability q92 of restoring the
ordering of F*n to Fn.

Else
(a) Sample one of the lineages coalescing at time

tk with uniformdiscrete probability. Set q2 ¼ 1
2.

(b) Update F*n: merge the sampled lineage with
the one coalescing at time tk21 in Fn. At time
tk21, merge the lineage not sampled with the
new lineage k.

(c) Compute the probability q92 of restoring the
ordering of F*n to Fn.

Else (Figure 4, Case B)

Swap the coalescent events. Lineages descending from k
are now set to coalesce at time tk21 and lineages previously
descending from k2 1 are now set to coalesce at time tk. Set
q2 ¼ 1 and q29 ¼ 1.

4. qðF*n
��FnÞ ¼ q1   q2, qðFn

��F*nÞ ¼ q1   q92.

Appendix D

We replicated the BEAST EBSP analysis of the 35 Yoruban
individuals from the 1000 Genomes Project phase 3 using
the whole mtDNA coding region consisting of 15,409 sites.
In both cases, we assumed the Jukes–Cantor mutation
model (Jukes and Cantor, 1969). Figure D1 shows the
comparison between EBSP inference from the 240 segre-
gating sites retained in Inferring human population demog-
raphy from mtDNA that are compatible with the infinite
sites mutation model assumption. In both cases, we re-
cover very similar trajectories.

In addition, we compared our resultswith BEASTBayesian
Skyline Plot (BSP) (Drummond and Rodrigo, 2000). For our
reduced data set of 240 segregating sites, we could not gen-
erate valid inference of NðtÞwith Metropolis–Hastings accep-
tance probability . 0. Instead, we were able to generate
results with BEAST BSP from the complete data set of
15,409 sites. The comparison of our method from 240 segre-
gating sites to BEAST BSP from 15,409 sites is depicted in
Figure D2.

Appendix E

In Figure E1A, we show the data from Figure 2A with an
additional haplotype (10) with frequency 1 and an addi-
tional column grouped with mutation group h (not shown
in the table). In Figure E1B we show the corresponding
perfect phylogeny. This new perfect phylogeny has a new
tip with black label 1 (frequency) subtending from a
branch with 0 mutations (red label). The path from the
leaf to the root shows that this haplotype has a unique
mutation corresponding to mutation group a. We note that
mutation group labels carry no information. We incorpo-
rate the labels in the figure for ease of exposition. Since
mutation group h has now multiplicity 2, the branch
labeled h has now a red label 2.
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Figure E1 Second example of Perfect Phylogeny. (A).
Compressed data representation Yh3m of n ¼ 17 se-
quences and s ¼ 19 (columns, only the first 10 of
which are shown), comprised of 10 haplotypes and
13 mutation groups. This data table has one more
haplotype (10) and one more mutation labeled h than
the example of Figure 2. (B). Gene tree representation
of the data in (A). Red numbers indicate the cardinality
of each mutation group (number of columns with the
same label in (A). Black letters indicate the mutation
group (column labels in (A), and black numbers indi-
cate the frequency of the corresponding haplotype.

Figure D2 Posterior inference of female effective
population size from 35 mtDNA samples from Yoru-
ban individuals in the 1000 Genomes Project using our
BESTT (first plot) from only 240 segregating sites and
the BEAST BSP (second plot) from all the 15,409 sites.
Posterior median curves are depicted as solid black
lines and 95% credible intervals by shaded regions.
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