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Summary. Changes in population size influence genetic diversity of the population and, as a result, leave a signature
of these changes in individual genomes in the population. We are interested in the inverse problem of reconstructing past
population dynamics from genomic data. We start with a standard framework based on the coalescent, a stochastic process
that generates genealogies connecting randomly sampled individuals from the population of interest. These genealogies serve
as a glue between the population demographic history and genomic sequences. It turns out that only the times of genealogical
lineage coalescences contain information about population size dynamics. Viewing these coalescent times as a point process,
estimating population size trajectories is equivalent to estimating a conditional intensity of this point process. Therefore, our
inverse problem is similar to estimating an inhomogeneous Poisson process intensity function. We demonstrate how recent
advances in Gaussian process-based nonparametric inference for Poisson processes can be extended to Bayesian nonparametric
estimation of population size dynamics under the coalescent. We compare our Gaussian process (GP) approach to one of the
state-of-the-art Gaussian Markov random field (GMRF) methods for estimating population trajectories. Using simulated data,
we demonstrate that our method has better accuracy and precision. Next, we analyze two genealogies reconstructed from
real sequences of hepatitis C and human Influenza A viruses. In both cases, we recover more believed aspects of the viral
demographic histories than the GMRF approach. We also find that our GP method produces more reasonable uncertainty
estimates than the GMRF method.

Key words: Coalescent; Data augmentation; Doubly intractable distribution; Point process; Thinning.

1. Introduction
Statistical inference in population genetics increasingly re-
lies on the coalescent (Kingman, 1982), the probability model
that describes the relationship between a gene genealogy of
a random sample of molecular sequences and effective pop-
ulation size. This model provides a good approximation to
the distribution of ancestral histories that arise from clas-
sical population genetics models (Rosenberg and Nordborg,
2002). More importantly, coalescent-based inference methods
allow us to estimate population genetic parameters, including
population size trajectories, directly from genomic sequences
(Griffiths and Tavaré, 1994). Recent examples of coalescent-
based population dynamics estimation include reconstructing
demographic histories of musk ox (Campos et al., 2010) from
fossil DNA samples and elucidating patterns of genetic diver-
sity of the dengue virus (Bennett et al., 2010).

Here, we are interested in estimating effective population
size trajectories from gene genealogies. The effective popula-
tion size is an abstract parameter that for a real biological
population is proportional to the rate at which genetic diver-
sity is lost or gained. In the absence of natural selection, the
effective population size can be used to approximate census
population size by knowing the generation time in calendar
units (e.g., years) and the population variability in number
of offspring (Wakeley and Sargsyan, 2009). The latter quan-

tity might be difficult to know; however, sometimes it suffices
to analyze an arbitrarily rescaled population size trajectory,
assuming the variability in number of offspring remains con-
stant. The effective population size is equal to the census pop-
ulation size in an idealized Wright–Fisher model. The Wright–
Fisher model is a simple and established model of neutral
reproduction in population genetics that assumes random
mating and nonoverlapping generations. For some RNA
viruses, for example human influenza A virus, the effective
population size rescaled by generation time (3–4 days) cannot
be interpreted directly as the effective number of infections
because of the presence of strong natural selection. However,
one can always adopt a more cautious interpretation of the
effective population size as a measure of relative genetic di-
versity (Rambaut et al., 2008; Frost and Volz, 2010).

Coalescent-based methods for estimation of population size
dynamics have evolved from stringent parametric assump-
tions, such as constant population size or exponential growth
(Griffiths and Tavaré, 1994; Kuhner, Yamato, and Felsen-
stein, 1998; Drummond et al., 2002), to more flexible nonpara-
metric approaches that assume piecewise linear population
trajectories (Strimmer and Pybus, 2001; Drummond et al.,
2005; Opgen-Rhein, Fahrmeir, and Strimmer, 2005; Heled and
Drummond, 2008; Minin, Bloomquist, and Suchard, 2008).
The latter class of methods is more appropriate in the
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absence of prior knowledge about the underlying demographic
dynamics, allowing researchers to infer shapes of popula-
tion size trajectories rather than to impose parametric con-
straints on these shapes. These nonparametric methods, how-
ever, model population dynamics by imposing a priori piece-
wise continuous functions which require regularization either
by smoothing or by controlling the number of change points,
also a priori. The former regularization—which works better
in practice (Minin et al., 2008)—is inherently difficult because
these piecewise continuous functions are defined on intervals
of varying size. The piecewise nature of these methods cre-
ates further modeling problems if one wishes to incorporate
covariates into the model or impose constraints on population
size dynamics (Minin et al., 2008). In this article, we propose
to solve these problems by bringing the coalescent-based es-
timation of population dynamics up to speed with modern
Bayesian nonparametric methods. Making this leap in statisti-
cal methodology will allow us to avoid artificial discretization
of population trajectories, to perform regularization without
making arbitrary scale choices, and, in the future, to extend
our method into a multivariate setting.

Our key insight stems from the fact that the coalescent with
variable population size is an inhomogeneous continuous-time
Markov chain (Tavaré, 2004) and, therefore, can be viewed
as an inhomogeneous point process (Andersen et al., 1995).
In fact, all current Bayesian nonparametric methods of esti-
mation of population size dynamics resemble early Bayesian
approaches to nonparametric estimation of the Poisson in-
tensity function via piecewise continuous functions (Arjas
and Heikkinen, 1997). Estimation of the intensity function
of an inhomogeneous Poisson process is a mature field that
evolved from maximum likelihood estimation under paramet-
ric assumptions (Brillinger, 1979) to frequentist (Diggle, 1985)
and, more recently, Bayesian nonparametric methods (Arjas
and Heikkinen, 1997; Møller, Syversveen, and Waagepetersen
1998; Kottas and Sansó, 2007; Adams, Murray, and MacKay,
2009).

Following Adams et al. (2009), we a priori assume that
population trajectories follow a transformed Gaussian pro-
cess (GP), allowing us to model the population trajectory as a
continuous function. This is a convenient way to specify prior
beliefs without a particular functional form on the popula-
tion trajectory. The drawback of such a flexible prior is that
the likelihood function involves integration over an infinite-
dimensional random object and, as a result, likelihood evalu-
ation becomes intractable. Fortunately, we are able to avoid
this intractability and perform inference exactly by adopting
recent algorithmic developments proposed by Adams et al.
(2009). We achieve tractability by a novel data augmentation
for the coalescent process that relies on thinning algorithms
for simulating the coalescent.

Thinning is an accept/reject algorithm that was first pro-
posed by Lewis and Shedler (1979) for the simulation of in-
homogeneous Poisson processes and was later extended to a
more general class of point processes by Ogata (1981). In the
spirit of Ogata (1981), we develop novel thinning algorithms
for the simulation of the coalescent. These algorithms, inter-
esting in their own right, open the door for latent variable rep-
resentation of the coalescent. This representation leads to a
new data augmentation that is computationally tractable and

amenable to standard Markov chain Monte Carlo (MCMC)
sampling from the posterior distribution of model parameters
and latent variables.

We test our method on simulated data and compare its
performance with a representative piecewise linear approach,
a Gaussian Markov random field (GMRF)-based method
(Minin et al., 2008). We demonstrate that our method is more
accurate and more precise than the GMRF method in all sim-
ulation scenarios. We also apply our method to two real data
sets that have been previously analyzed in the literature: a
hepatitis C virus (HCV) genealogy estimated from sequences
sampled in 1993 in Egypt and a genealogy of the H3N2 hu-
man influenza A virus estimated from sequences sampled in
New York state between 2002 and 2005. In the HCV anal-
ysis, we successfully recover all believed key aspects of the
population size trajectory. Compared to the GMRF method,
our GP method better reflects the uncertainty inherent in
the HCV data. In our second real data example, our GP
method successfully reconstructs a population trajectory of
the human influenza A virus with an expected seasonal se-
ries of peaks followed by population bottlenecks, although
the GMRF method’s reconstructed trajectory fails to recover
some of the peaks and bottlenecks.

2. Methods
2.1 Coalescent Background
The coalescent model allows us to trace the ancestry of a
random sample of n genomic sequences. These ancestral re-
lationships are represented by a genealogy or tree; the times
at which two sequences or lineages merge into a common an-
cestor are called coalescent times. The coalescent with vari-
able population size can be viewed as a nonhomogeneous
Markov death process that starts with n lineages at present
time tn = 0 and decreases by one, with time running back-
wards, until reaching one lineage at t1, at which point the sam-
ples have been traced to their most recent common ancestor
(Griffiths and Tavaré, 1994).

Here, we assume that a genealogy with time measured in
units of generations is observed. The shape of the genealogy
depends on the effective population size trajectory, Ne (t),
and the number of samples accumulated through time: the
larger the effective population size, the longer two lineages
need to wait to meet a common ancestor and the larger
the sample size, the faster two lineages coalesce. Formally,
let tn = 0 denote the present time when all the n avail-
able sequences are sampled (isochronous coalescent) and let
tn = 0 < tn−1 < · · · < t1 denote the coalescent times of lin-
eages in the genealogy with time going backwards. Then, the
conditional density of the coalescent time tk−1 takes the fol-
lowing form:

P [tk−1|tk , Ne (t)] =
Ck

Ne (tk−1)
exp

{
−

∫ tk −1

tk

Ck

Ne (t)
dt

}
, (1)

where Ck = (k
2 ) is the coalescent factor that depends on the

number of lineages k = 2, . . . , n.
The heterochronous coalescent arises when samples of se-

quences are collected at different times (Figure 1). Such seri-
ally sampled data are common in studies of rapidly evolving
viruses and analyses of ancient DNA (Campos et al., 2010).
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Figure 1. Example of a genealogy relating serially sampled sequences (heterochronous sampling). The number of lineages
changes every time we move between intervals (Ii,k ). Each endpoint of an interval is a coalescent time ({tk }n

k=1) or a sampling
time ({sj }m

j=1). The number of sequences sampled at time sj is denoted by nj .

Let tn = 0 < tn−1 < · · · < t1 denote the coalescent times as
before, but now let sm = 0 < sm −1 < · · · < s1 < s0 = t1 de-
note sampling times of nm , . . . , n1 sequences, respectively,∑m

j=1 nj = n. Further, let s and n denote the vectors of sam-
pling times and numbers of sequences sampled at these times,
respectively (Figure 1). Now, the coalescent factor changes
not only at the coalescent events but also at the sampling
times. Let

I0,k = (max{tk , sj }, tk−1], for sj < tk−1 and k = 2, . . . , n, (2)

be the intervals that end with a coalescent event and

Ii,k = (max{tk , sj+i}, sj+i−1], for sj+i−1 > tk

and sj < tk−1, k = 2, . . . , n,
(3)

be the intervals that end with a sampling event. We denote
the number of lineages in Ii,k with ni,k . Then, for k = 2, . . . , n,

P [tk−1|tk , s,n, Ne (t)] =
C0,k

Ne (tk−1)

− exp

{∫
I0, k

C0,k

Ne (t)
dt +

m∑
i=1

∫
Ii , k

Ci,k

Ne (t)
dt

}
, (4)

where Ci,k = (
ni,k

2 ). That is, the density for the next coales-

cent time tk−1 is the product of the density of the coalescent
time tk−1 ∈ I0,k and the probability of not having a coales-
cent event during the period of time spanned by intervals
I1,k , . . . , Im ,k (Felsenstein and Rodrigo, 1999).

2.2 GP Prior for Population Size Trajectories
For both isochronous or heterochronous data, we place the
same prior on Ne (t):

Ne (t) =

[
λ

1 + exp {−f (t)}

]−1

, (5)

where

f (t) ∼ GP(0,C(θ)) (6)

and GP(0,C(θ)) denotes a GP with mean function 0 and
covariance function C(θ) with hyperparameters θ. A priori,
1/Ne (t) is a sigmoidal GP, a scaled logistic function of a GP
whose range is restricted to lie in [0, λ]; λ is a positive constant
hyperparameter, the inverse of which serves as a lower bound
of Ne (t) (Adams et al., 2009).

A GP is a stochastic process such that any finite sam-
ple from the process has a joint Gaussian distribution. The
process is completely specified by its mean and covariance
functions (Rasmussen and Williams, 2005). For computa-
tional convenience we use Brownian motion as our GP prior.
Generating a finite sample from a GPs requires O(n3) com-
putations because of the inversion of the covariance matrix.
However, when the precision matrix, the inverse of the covari-
ance, is sparse, such simulations can be accomplished much
faster (Rue and Held, 2005). For example, when we choose
to work with a Brownian motion with covariance matrix ele-
ments C(t, t′) = 1

θ
(min(t, t′)) and precision parameter θ, then

the inverse of this matrix is tri-diagonal, which reduces the
computational complexity of simulations from O(n3) to O(n).
In our MCMC algorithm, we need to generate realizations
from the GPs at thousands of points, so the speed-up afforded
by the Brownian motion becomes almost a necessity, prompt-
ing us to use this process as our prior in all our examples.

2.3 Priors for Hyperparameters
The precision parameter θ controls the degree of autocorrela-
tion of our Brownian motion prior and influences the “smooth-
ness” of the reconstructed population size trajectories. We
place on θ a Gamma prior distribution with parameters α
and β. The other hyperparameter in our model is the upper
bound of 1/Ne (t), λ. When this upper bound λ is unknown,
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the model is unidentifiable (see equation (5)). However, in
many circumstances it is possible to obtain an upper bound λ
(or equivalently, a lower bound on N (t)) from previous stud-
ies and use this value to define the prior distribution of λ. We
use the following strategy to construct an informative prior
for λ. Let λ̂ denote our best guess of the upper bound, pos-
sibly obtained from previous studies. Then, the prior on λ is
a mixture of a uniform distribution for values to the left of λ̂
and an exponential distribution to the right:

P (λ) = ε
1

λ̂
I{λ< λ̂} + (1 − ε)

1

λ̂
e
− 1

λ̂
(λ−λ̂ )

I{λ≥λ̂}, (7)

where ε > 0 is a mixing proportion. When λ̂ is considerably
smaller than the unknown λ, the recovered curve will be vis-
ibly truncated around λ̂, indicating that one needs to try
higher values of λ̂.

2.4 Doubly Intractable Posterior
Coalescent times T = {tn , tn−1, . . . , t1} of a given genealogy
contain information needed to estimate Ne (t) (see equations
(1) and (4)). Given that Ne (t) is a one-to-one function of f (t)
(equation (5)), we will focus the discussion on the inference of
f (t). The posterior distribution of f (t) and hyperparameters
θ and λ becomes

P (f (t), θ, λ|T ) ∝ P (T |λ, f (t))P (f (t)|θ)P (θ)P (λ), (8)

where P (f (t)|θ) is a GP prior with hyperparameter θ and

P (T |λ, f (t)) =
n∏

k=2

Ck λ

1 + exp {−f (tk−1)}

× exp

[
−Ck

∫ tk −1

tk

λ

1 + exp {−f (t)}dt

] (9)

is the likelihood function for the isochronous data (hete-
rochronous data likelihood has a similar form). The integral in
the exponent of equation (9) and the normalizing constant of
equation (8) are computationally intractable, making the pos-
terior doubly intractable (Murray, Ghahramani, and MacKay
2006).

Adams et al. (2009) faced a similar doubly intractable pos-
terior distribution in the context of nonparametric estimation
of intensity of the inhomogeneous Poisson process. These au-
thors propose an introduction of latent variables so that the
augmented data likelihood becomes tractable. This tractabil-
ity makes the posterior distribution of latent variables and
model parameters amenable to standard MCMC algorithms.
Because Adams et al. (2009) based their data augmentation
on the thinning algorithm for simulating inhomogeneous Pois-
son processes, we would like to devise a similar data augmen-
tation based on a thinning algorithm for simulation of the
coalescent with variable population size. In this simulation,
we envision generating coalescent times assuming a constant
population size and then thinning these times so that the
distribution of the remaining (nonrejected) coalescent times
follows the coalescent with variable population size. As no
thinning algorithm for simulating the coalescent process ex-
ists, we develop a series of such algorithms. In developing
these algorithms, we find it useful to view the coalescent as a
point process, a representation that we discuss below.

2.5 The Coalescent as a Point Process
The joint density of coalescent times is obtained by multiply-
ing the conditional densities defined in equations (1) or (4).
This density can be expressed as

P (t1, . . . , tn−1|Ne (t)) =
n∏

k=2

λ∗(tk−1|tk ) exp

{
−

∫ tk −1

tk

λ∗(t|tk )dt

}
, (10)

where λ∗(t|tk ) denotes the conditional intensity function of a
point process on the real line (Daley and Vere-Jones, 2002).
For isochronous coalescent, the conditional intensity is defined
by the step function:

λ∗(t|tk ) =

(
k
2

)
Ne (t)−11{t∈(tk ,tk −1]}, for k = 2, . . . , n, (11)

and the conditional intensity of the heterochronous coalescent
point process is:

λ∗(t|n, s, tk ) =
m∑
i=1

(
ni,k

2

)
Ne (t)−11{t∈Ii , k }, for k = 2, . . . , n.

(12)

This novel representation allows us to reduce the task of es-
timating Ne (t) to the estimation of the inhomogeneous inten-
sity of the coalescent point process and to develop simulation
algorithms based on thinning.

2.6 Coalescent Simulation via Thinning
To the best of our knowledge, the only method available
for simulating the coalescent under the deterministic vari-
able population size model is a time transformation method
(Slatkin and Hudson, 1991; Hein, Schierup, and Wiuf 2005).
This method is based on the random time-change theorem
due to Papangelou (1972). Under the time transformation
method, to simulate coalescent times, we proceed sequentially
starting with k = n and tn = 0, generating t from an exponen-
tial distribution with unit mean, solving

t =
∫ tk −1

tk

λ∗(u|tk )du (13)

for tk−1 analytically or numerically and repeating the proce-
dure until k = 2. For isochronous coalescent, λ∗(u|tk ) is de-
fined in equation (11) and for the heterochronous coalescent,
λ∗(u|tk ) = λ∗(u|n, s, tk ) is the piecewise function defined in
equation (12). When Ne (t) is stochastic, the integral in equa-
tion (13) becomes intractable and the time transformation
method is no longer practical. Instead, we propose to use thin-
ning, a rejection-based method that does not require calcula-
tion of the integral in equation (13).

Lewis and Shedler (1979) proposed thinning a homoge-
neous Poisson process for the simulation of an inhomoge-
neous Poisson process with intensity λ(t). The idea is to start
with a realization of points from a homogeneous Poisson pro-
cess with intensity λ and accept/reject each point with ac-
ceptance probability λ(t)/λ, where λ(t) ≤ λ. The collection
of accepted points forms a realization of the inhomogeneous
Poisson process with conditional intensity λ(t). Ogata (1981)
extended Lewis and Shedler’s thinning for the simulation of
any point process that is absolutely continuous with respect
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to the standard Poisson process. We develop a series of thin-
ning algorithms for the coalescent process that are similar
to Ogata’s algorithms, but not identical to them. Algorithm
1 outlines the simulation of n coalescent times under the
isochronous sampling. Given tk , we start generating and ac-
cumulating exponential random numbers Ei with rate Ck λ,
until tk−1 = tk + E1 + E2 + . . . is accepted with probability
1/Ne (tk−1)λ. (See Web Appendix A for details and simula-
tion algorithms of coalescent times for heterochronous sam-
pling.) To ensure convergence of the algorithm, we require∫ ∞

0
du

N e (u ) = ∞ a.s., which is equivalent to requiring that all
sampled lineages can be traced back to their single common
ancestor with probability 1. Note that Ne (t) can be either de-
terministic or stochastic. The latter case is considered in Web
Supplementary Algorithm 2, where we work with f (t) instead
of Ne (t) for notational convenience.

If Ne (t) is deterministic and equation (13) can be solved
analytically, the time transformation method is likely to be
more efficient than thinning because the thinning algorithm
is an accept/reject algorithm with the acceptance probability
highly dependent on the definition of λ. However, efficiency
of the thinning algorithm can be improved by replacing the
constant upper bound λ on 1/Ne (t), by a piecewise constant
or a piecewise linear function of local upper bounds to achieve
higher acceptance probabilities, similarly to the adaptive re-
jection sampling of Gilks and Wild (1992).

2.7 Data Augmentation and Inference
As mentioned in the previous section, our thinning algo-
rithm for the coalescent is motivated by our desire to con-
struct a data augmentation scheme. We imagine that ob-
served coalescent times T were generated by the thinning
procedure described in Algorithm 1, so we augment T with
rejected (thinned) points N . If we keep track of the re-
jected points resulting from Algorithm 1, then, given tk ,
f (tk ), fNk

= {f (tk ,i )}m k
i=1 and λ, we start proposing new time

points Nk = {tk ,1, . . . , tk ,m k
} until tk−1 is accepted, so that

Algorithm 1
Simulation of isochronous coalescent times by thinning -

Ne(t) is a deterministic function.

Input: k = n, tn = 0, t = 0, 1/Ne(t) ≤ λ, Ne(t)
Output: T = {tk}n

k=1
1: while k > 1 do
2: Sample E ∼ Exponential(Ckλ) and U ∼ U(0, 1)
3: t=t+E
4: if U ≤ 1

Ne (t)λ
then

5: k ← k − 1, tk ← t
6: end if
7: end while

P (tk−1,Nk |tk , f (tk−1), fNk
, λ) =

× (Ck λ)m k +1 exp {−Ck λ(tk − tk−1)}
[

1
1 + exp {−f (tk−1)}

]

×
m k∏
i=1

[
1 − 1

1 + exp {−f (tk ,i )}

]
. (14)

For the heterochronous coalescent (see Algorithm 3 in Web
Supplemental Materials), equation (14) is modified in the fol-
lowing way:

P (tk−1,Nk |tk , f(tk−1), fNk
, λ, s,n) =

× (λC0,k )1+m 0, k exp{−λC0,k l(I0,k )}

×
[(

1
1 + exp {−f (tk−1)}

)

×
m k∏
i=1

1
1 + exp {f (tk ,i )}

]

×
m∏
i=1

[(λCi,k )m i , k exp{−λCi,k l(Ii,k )}] ,
(15)

where l(Ii,k ) denotes the length of the interval Ii,k and mi,k =∑m k

l=1 1 {tk ,l ∈ Ii,k } denotes the number of latent points in in-
terval Ii,k . Let fT ,N =

{
{f (tk )}n

k=1 ,
{
{f (tk ,i )}m k

i=1

}n

k=2

}
, then

the augmented data likelihood of T and N becomes

P (T ,N|fT ,N , λ) =
n∏

k=2

P (tk−1,Nk |tk , f(tk−1), fNk
, λ). (16)

Then, the posterior distribution of f (t) and hyperparameters
evaluated at the observed T and latent N time points is

P (fT ,N , λ, θ|T ,N ) ∝ P (T ,N|fT ,N , λ)P (fT ,N |θ)P (λ)P (θ).

(17)

The augmented posterior can now be easily evaluated because
it does not involve integration of infinite-dimensional ran-
dom functions. We follow Adams et al. (2009) and develop
a MCMC algorithm to sample from the posterior distribution
(16). At each iteration of our MCMC, we update the following
variables: (1) number of “rejected” points #N ; (2) the loca-
tions of the rejected points N ; (3) the function values fT ,N ,
and (4) the hyperparameters θ and λ. We use a Metropolis–
Hastings algorithm to sample the number and locations of
latent points and the hyperparameter λ; we Gibbs sample the
hyperparameter θ. Updating the function values fT ,N is non-
trivial, because this high-dimensional vector has correlated
components. In such cases, single-site updating is inefficient
and block updating is preferred (Rue and Held 2005). We
use elliptical slice sampling, proposed by Murray, Adams, and
MacKay (2010), to sample fT ,N . The advantage of using the
elliptical slice sampling proposal is that it does not require
the specification of tuning parameters and works well in high
dimensions. The details of our MCMC algorithm can be found
in Web Appendix B.

We summarize the posterior distribution of Ne (t) by its
empirical median and 95% Bayesian credible intervals (BCIs)
evaluated at a grid of points. This grid can be made as fine
as necessary after the MCMC is finished. That is, given the
function values fT ,N at coalescent and latent time points, and
the value of the precision parameter θ at each iteration, we
sample the function values at a grid of points g = {g1, ..., gB }
from its predictive distribution fg ∼ P (fg|fT ,N , θ), and evalu-
ate {Ne (gi )}B

i=1.
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3. Results
3.1 Simulated Data
We simulate three genealogies relating 100 individuals, sam-
pled at the same time t = 0 (isochronous sampling) under the
following demographic scenarios: (1) constant population size
trajectory: Ne (t) = 1; (2) exponential growth: Ne (t) = 25e−5t ;
and (3) population expansion followed by a crash: Ne (t) =
e4t1{t∈[0,0.5]} + e−2t+31{t∈(0.5,∞)}. We compare the posterior me-
dian with the truth by the sum of relative errors (SRE):

SRE =
K∑
i=1

|N̂e (si ) − Ne (si )|
Ne (si )

, (18)

where N̂e (si ) is the estimated trajectory at time si with
s1 = t1, the time to the most recent common ancestor and
sK = tn = 0 for any finite K . Similarly, we compute the
mean relative width (MRW) of the 95% BCIs defined in the
following way:

MRW =
K∑
i=1

|N̂97.5(si ) − N̂2.5(si )|
KNe (si )

. (19)

We also compute the percentage of time, the 95% BCIs cover
the truth (envelope) in the following way:

envelope =

K∑
i=1

I(N̂2.5(si ) ≤ N (si ) ≤ N̂97.5(si ))

K
. (20)

As a measure of the frequentist coverage, we calculate the per-
centage of times the truth is completely covered by the 95%
BCIs (envelope = 1), by simulating each demographic scenario
and performing Bayesian estimation of each such simulation
100 times.

We compute the three statistics for the three simula-
tion scenarios for K = 150 at equally spaced time points
(Table 1). These statistics do not change significantly when we
use higher values of K . In addition, we compute the variation
of N̂e (t) over a regular grid of K = 150 points as follows:

variation =
K −1∑
i=1

|N̂e (si+1) − N̂e (si )|. (21)

For all simulations, we set the mixing parameter ε of the
prior density for λ (equation (7)) to ε = 0.01. The parame-
ters of the Gamma prior on the GP precision parameter θ
were set to α = β = 0.001. We summarize our posterior infer-
ence in Figure 2 and compare our GP method to the GMRF
smoothing method (Minin et al., 2008). The effective popu-
lation trajectory is log transformed and time is measured in
units of generations.

For the constant population scenario (first row in Figure 2),
the truth (dashed lines) is almost perfectly recovered by the
GP method (solid black line) and the 95% BCIs shown as
gray shaded areas are remarkably tight. For the exponential
growth simulation (second row), the GMRF method recovers
the truth better in the right tail, although our GP method
recovers it much better in the left tail. The higher variation
of the GP reconstruction in the right tail makes this measure
higher than for the GMRF reconstruction. Overall, our GP

method better recovers the truth in the exponential growth
scenario, as evidenced by SREs and MRWs in Table 1. The
last row in Figure 2 shows the results for a population that
experiences expansion followed by a crash in effective popu-
lation size. In this case, 95% BCIs of the two methods do not
completely cover the true trajectory. Although an area near
the bottleneck is particularly problematic, the GP method’s
envelope is much higher (92%) than the envelope produced
by the GMRF method (77.3%), the variation recovered by the
GP method is closer to the true variation in all simulation sce-
narios and in general, in terms of the four statistics employed
here, the GP method shows better performance. Results for
the GMRF method were obtained using the BEAST software
(Drummond et al., 2012) with running times ranging from 25
to 40 minutes, although results for the GP method were ob-
tained using R with running times ranging from 60 to 180 min-
utes. Although our GP implementation takes longer, we ob-
tain better performance in a still reasonable amount of time.

Next, we simulate each of the three scenarios 100 times and
compute the four statistics described before for both meth-
ods. The distributions of these statistics are represented by
the boxplots depicted in Figure 3. In general, our GP method
has smaller SREs, except in the constant case, where the dis-
tributions look very similar; smaller MRWs, larger envelopes,
and variation closer to the truth. In addition, we calculate
the percentage of times, the envelope is 1 as a proxy for fre-
quentist coverage of the 95% BCIs. Because the 95% BCIs
are calculated point-wise at 150 equally spaced points, we
do not necessarily expect frequentist coverage to be close to
95%. The results are shown as the numbers at the top of the
right plot in Figure 3. The coverage levels obtained using the
GP method are larger than those obtained using the GMRF
method.

3.2 Egyptian HCV
HCV was first identified in 1989. By 1992, when HCV anti-
body testing became widely available, the prevalence of HCV
in Egypt was about 10.8%. Today, Egypt is the country with
the highest HCV prevalence (Miller and Abu-Raddad, 2010).
A widely held hypothesis that can explain the epidemic em-
phasizes the role of a parenteral antischistosomal therapy
(PAT) campaign, that started in the 1920s, combined with
lack of sanitary practices. The campaign was discontinued in
the 1970s when the intravenous treatment was gradually re-
placed by oral administration of the treatment (Ray et al.,
2000). Coalescent demographic methods developed over the
last 10 years demonstrated evidence in favor of this hypothe-
sis (Pybus et al., 2003; Drummond et al., 2005; Minin et al.,
2008). Therefore, this example is well suited for testing our
method. We analyze the genealogy estimated by Minin et al.
(2008), based on 63 HCV sequences sampled in Egypt in 1993,
and compare our method to the GMRF smoothing method
(Minin et al., 2008). The results are depicted in Figure 4,
with time scaled in units of years. In line with previous re-
sults (Pybus et al., 2003; Drummond et al., 2005; Minin et al.,
2008), our estimation recovers the exponential growth of the
HCV population size starting from the 1920s when the in-
travenously administered PAT was introduced. Both Pybus
et al. (2003) and Minin et al. (2008) hypothesize that the
population trajectory remained constant before the start of
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Table 1
Summary of simulation results depicted in Figure 2. SRE is the sum of relative errors as defined in equation (19), MRW is the

mean relative width of the 95% BCI as defined in equation (20), envelope is calculated as in equation (21), and variation is
calculated as in equation (22). The values in bold indicate the best performing method.

SRE MRW Envelope Variation

Simulations GMRF GP GMRF GP GMRF GP GMRF GP TRUTH

Constant 50.41 4.15 4.21 0.72 100.0% 100.0% 2.27 0.08 0.00
Exp. growth 47.65 33.60 2.55 2.35 100.0% 100.0% 30.19 52.41 24.80
Expansion/crash 181.88 140.88 10.7 7.26 77.33% 92.0% 5.69 6.94 13.46
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Figure 2. Simulated data under the constant population size (first row), exponential growth (second row), and expansion
followed by a crash (third row). The simulated points are represented by the points at the bottom of each plot. We show
the log of the effective population size trajectory estimated under the Gaussian Markov random field smoothing (GMRF)
method and our method: Gaussian process-based nonparametric inference of effective population size (GP). We show the true
trajectories as dashed lines, posterior medians as solid black lines, and 95% BCIs by gray shaded areas.
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plot indicate variations of the true simulated trajectories.
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Figure 4. Egyptian HCV. The first plot (left to right) is one possible genealogy reconstructed by Minin et al. (2008). The
next two plots represent the log of scaled effective population trajectory estimated using the GMRF smoothing method and
our GP method. The posterior medians for the last two plots are represented by solid black lines and the 95% BCIs are
represented by the gray shaded areas. The vertical dashed lines mark the years 1920 (the start of intravenous PAT), 1970 (the
end of intravenous PAT), and 1993 (sampling time of sequences).

the exponential growth. The GMRF and GP approaches dis-
agree the most on the HCV population size reconstruction
before 1920s. The GP method produces narrower BCIs near
the root of the genealogy (1710–1770) than the GMRF ap-
proach. In contrast, GP BCIs are inflated in the time period
from 1770 to 1900 in comparison to the GMRF results. We
believe that the uncertainty estimates produced by the GP
approach are more reasonable than the GMRF result, be-

cause there are multiple coalescent events during 1710–1770,
providing information about the population size, although the
time interval 1770–1900 has no coalescent events, a data pat-
tern that should result in substantial uncertainty about the
HCV population size. Another notable difference between the
GMRF and GP methods is in estimation of the HCV pop-
ulation trajectory after 1970. The GP approach suggests a
sharper decline in population size during this time interval.
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Figure 5. H3N2 Influenza A virus in New York state. The first plot (left) is the estimated genealogy. The second and third
plots are the GMRF and GP estimations of log-scaled effective population trajectories. Winter seasons are represented by
the doted shaded areas. Posterior medians are represented by solid black lines and 95% BCIs are represented by gray shaded
areas.

3.3 Seasonal Human Influenza
Here, we estimate population dynamics of human influenza
A, based on 288 H3N2 sequences sampled in New York state
from January 2001 to March 2005. Sequences from the coding
region of the influenza hemagglutinin gene of H3N2 influenza
A virus from New York state were collected from the Na-
tional Center for Biotechnology Information (NCBI) Influenza
Database (Influenza Genome Sequencing Project, 2011), in-
corporating the exact dates of viral sampling in weeks (hete-
rochronous sampling) and aligned using the software package
MUSCLE (Edgar, 2004). These sequences form a subset of
sequences analyzed in Rambaut et al. (2008). We carried out
a phylogenetic analysis using the software package BEAST
(Drummond et al., 2012) to generate a majority clade sup-
port genealogy with median node heights as our genealogi-
cal reconstruction. The reconstructed genealogy is depicted
in the left plot of Figure 5. Demography of H3N2 influenza
A virus in temperate regions, such as New York, is charac-
terized by epidemic peaks during winters followed by strong
bottlenecks at the end of epidemic seasons. As expected, our
method recovers the peaks in the effective number of in-
fections during all seasons starting from the 2001–2002 flu
season (flu seasons are represented as doted rectangles in
Figure 5). The GMRF method fails to recover the peak dur-
ing the 2002–2003 season. The large uncertainty in population
size estimation during the 1999–2000, 2000–2001, and at the
beginning of 2005–2006 seasons is explained by the small num-
ber of coalescent events during those time periods, however,
this uncertainty is larger in the GMRF recovered trajectory.
During the 2001–2002 flu season, the GMRF method fails to
recover the expected trajectory of a peak followed by a bot-
tleneck and instead, this method recovers an epidemic that
started during the end of 2001, increased and remained “at
peak” until the end of the following winter. The GMRF re-
covered trajectory during the winter season of 2003 exhibits
a steep decrease. In contrast, the GP method detects a late
peak during the 2001–2002 season, followed by a decline in
the number of infections. There is a small bump in the effec-
tive population size of influenza in the winter of 2003, which

is more realistic than a steady decline in the number of in-
fections estimated by the GMRF method. Overall, we believe
that the GP reconstructed trajectory is more feasible from an
epidemiological point of view than the GMRF population size
reconstruction.

4. Discussion
We propose a new nonparametric method for estimating pop-
ulation size dynamics from gene genealogies. To the best of
our knowledge, we are the first to solve this inferential prob-
lem using modern tools from Bayesian nonparametrics. In our
approach, we assume that the population size trajectory a
priori follows a transformed GP. This flexible prior allows us
to model population size trajectory as a continuous function
without specifying its parametric form and without resorting
to artificial discretization methods. We tested our method on
simulated and real data and compared it with the competing
GMRF method. On simulated data, our method recovers the
truth with better accuracy and precision. On real data, where
true population trajectories are unknown, our method recov-
ers known epidemiological aspects of the population dynamics
and produces more reasonable estimates of uncertainty than
the competing GMRF method.

We bring Bayesian nonparametrics into the coalescent
framework by viewing the coalescent as a point process. This
representation allows us to adapt Bayesian nonparametric
methods originally developed for Poisson processes to the co-
alescent modeling. In particular, it allows us to adapt the
thinning-based data augmentation for Poisson processes de-
veloped by Adams et al. (2009). We devise an analogous data
augmentation for the coalescent by developing a series of new
thinning algorithms for the coalescent. Although we use these
algorithms in a very narrow context, our novel coalescent sim-
ulation protocols should be of interest to a wide range of users
of the coalescent. For example, we are not aware of any com-
petitors of our Web Supplementary Algorithms 2 and 4 that
allow one to simulate coalescent times with a continuously
and stochastically varying population size.
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Our method works with any GP with mean 0 and co-
variance matrix C, where the latter controls the level of
smoothness and autocorrelation. For computational tractabil-
ity however, sparsity in the precision matrix (inverse covari-
ance matrix) may be necessary for complex trajectories with
a high number of latent points. One way to achieve sparse
matrix computations and computational tractability is to use
GP that is also Markov. In all our examples, we use Brownian
motion with precision parameter θ; however, the nondifferen-
tiability characteristic of the Brownian motion is compensated
by the fact that our estimate of effective population trajec-
tory is the posterior median evaluated point-wise, which is
smoother than any of the sampled posterior curves. In ad-
dition, we compared Brownian motion, Ornstein–Uhlenbeck
and a higher order integrated Brownian motion for one of our
examples and obtained very similar results under all three
priors (see Web Supplementary Materials). Finite sample dis-
tributions under these three priors enjoy sparse precision ma-
trices that yield computational tractability comparable to the
GMRF method. In our Brownian motion prior, the precision
parameter controls the level of smoothness of the estimated
population size trajectory. We find that this important pa-
rameter shows little sensitivity to prior perturbations.

Our method assumes that a genealogy or tree is given to
the researcher. However, genealogies are themselves inferred
from molecular sequences, so we need to incorporate genealog-
ical uncertainty into our estimation. Our framework can be
extended to inference from molecular sequences instead of ge-
nealogies by introducing another level of hierarchical mod-
eling into our Bayesian framework, similar to the work of
Drummond et al. (2005) and Minin et al. (2008). Further,
we plan to extend our method to handle molecular sequence
data from multiple loci as in (Heled and Drummond, 2008).
Finally, we would like to extend our nonparametric estimation
into a multivariate setting, so that we can estimate cross-
correlations between population size trajectories and external
time series. Estimating such correlations is a critical problem
in molecular epidemiology.

We deliberately adapted the work of Adams et al. (2009) on
estimating the intensity function of an inhomogeneous Pois-
son process, as opposed to alternative ways to attack this esti-
mation problem (Møller et al., 1998; Kottas and Sansó, 2007),
to the coalescent. We believe that among the state-of-the-
art Bayesian nonparametric methods, our adopted GP-based
framework is the most suitable for developing the aforemen-
tioned extensions. First, it is straightforward to incorporate
external time series data into our method by replacing a uni-
variate GP prior with a multivariate process that evolves the
population size trajectory and another variable of interest in a
correlated fashion (Teh, Seeger, and Jordan 2005). Second, the
fact that our method does not operate on a fixed grid is crit-
ical for relaxing the assumption of a fixed genealogy, because
fixing the grid a priori is problematic when one starts sam-
pling genealogies, including coalescent times, during MCMC
iterations.

Finally, as the coalescent model with varying population
size can be viewed as a particular example of an inhomoge-
neous continuous-time Markov chain, all our mathematical
and computational developments are almost directly trans-
ferable to this larger class of models. Therefore, our devel-

opments potentially have implications for nonparametric es-
timation of inhomogeneous continuous-time Markov chains
with numerous applications.

5. Supplementary Materials
Web Appendices referenced in Sections 2.6, 2.7, and 4 are
available with this paper at the Biometrics website on Wi-
ley Online Library. The R code implementing the thin-
ning algorithm and our MCMC algorithm is available at
http://www.stat.washington.edu/people/jpalacio.
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