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Abstract: Recovery of population size history from molecular sequence data is an important
problem in population genetics. Inference commonly relies on a coalescent model linking the
population size history to genealogies. The high computational cost of estimating parameters
from these models usually compels researchers to select a subset of the available data or to
rely on non-sufficient summary statistics for statistical inference. We consider the problem
of recovering the true population size history from two possible alternatives on the basis of
coalescent time data. We give exact expressions for the probability of selecting the correct
alternative in a variety of biologically interesting cases as a function of the separation between
the alternative size histories, the number of individuals, loci, and the sampling times. The
results are applied to human population history. This work has significant implications for
optimal design when the inferential goal is to test scientific hypotheses about population size
trajectories in coalescent models with and without recombination.

1. Introduction

Estimation of historical effective population size trajectories from genetic data provides insight
into how genetic diversity evolves over time. Availability of molecular sequence data from different
organisms living today and from ancient DNA samples together with the development of evolutionary
probabilistic models [30], has enabled reconstruction of effective population size trajectories of human
populations over the past 300,000 years [8, 19], Ebola virus over the course of the 2014 epidemic in
Sierra Leone [29] and Egyptian hepatitis C virus for over 100 years [11].

Until recently, inference of effective population size trajectories was limited by scarcity of molecu-
lar sequence data such as single nucleotide polymorphisms (SNPs) and microsatellites. The increase
in the total amount of genetic data obtained at different time points from a large number of individ-
uals over large genomic segments (loci), and the development of more realistic probabilistic models,
has led to a situation in which computationally tractable statistical inference is only available from
non-sufficient summary statistics such as the site frequency spectrum (SFS) [21], from small numbers
of samples, or from short genomic regions [2, 9, 14, 15, 26]. Gao and Keinan [7] give an extensive
list of methods.

Accurate detection of change points in the effective population size trajectory is of scientific
relevance in many applications such as the timing and length of the human expansion out-of-Africa
[7], and extinctions of large mammals at the end of the Pleistocene epoch often attributed to the
depredations of humans [23]. Rather than studying the statistical properties of different estimators,
we consider how increasing the amount of genetic data increases our ability to distinguish between
alternative hypotheses about population history under different evolutionary models. We evaluate
the ability to detect change points by asking what the lowest achievable error rate is for classification
between alternative hypotheses about population history with different change points –the Bayes
error rate. Calculation of Bayes error rates allows us to answer such questions without the need to rely
on any particular estimator. We give exact expressions for the probability that the optimal procedure
can identify the truth, given coalescence data. We study the effect of adding more sequences and more
loci under the coalescent model with and without recombination and under different demographic
scenarios.

1

imsart-generic ver. 2014/10/16 file: testing-hetero.tex date: January 17, 2018

ar
X

iv
:1

71
1.

05
72

4v
2 

 [
m

at
h.

ST
] 

 1
6 

Ja
n 

20
18

http://arxiv.org/abs/arXiv:1711.05724
mailto:johndrow@stanford.edu, juliapr@stanford.edu


J. Johndrow and J. Palacios/Exact inferential limits for the coalescent 2

2. Coalescent evolutionary models

The standard n-coalescent [13] is a generative model of molecular sequence of n individuals sampled
at random from a population of interest. In the single-locus neutral model, observed variation is
the result of a stochastic process of mutations along the branches of the sample’s genealogy; the
genealogy is a timed bifurcating tree (Figure 1A) that represents the ancestral relationships among
samples. When moving back in time, two individuals find a common ancestor (coalesce) in the
past with rate inversely proportional to the effective population size N(t). Initially, the standard
(homogeneous) n-coalescent assumed constant population size N(t) = N and that sequences were
sampled at the same time (t=0). Assuming a global mutation rate µ, the parameter of interest is
θ = 2Nµ. The standard neutral coalescent has been extended to variable population size N(t) [25],
varying sampling times (heterochronous coalescent [4]), and to account for population structure [1]
and recombination [10].

Formally, the coalescent with variable effective population size N(t) [25] is an inhomogeneous
Markov point process of n− 1 coalescent times denoted by xn−1, . . . , x1. The process starts with n
individuals (lineages) at fixed time xn = 0 until xn−1 when two of the n lineages meet their most
recent common ancestor. The process continues merging (coalescing) pairs of lineages until time x1

when the remaining two lineages reach a common ancestor. The resulting realization is a genealogy
with n−1 coalescent times like the one depicted in Figure 1A. The conditional density of coalescent
time xk−1 is

f(xk−1 | xk, N(t)) =
Ck

N(xk−1)
exp

{
−
∫ xk−1

xk

Ck
N(t)

dt

}
where Ck =

(
k
2

)
is the combinatorial factor depending on the number of possible ways that two

lineages can coalesce given that there are k lineages, and N(t) is the effective population size, a
positive function of time. It follows that the complete likelihood is given by

L(x1, . . . , xn | N(t)) = f(xn)

2∏
k=n

f(xk−1 | xk, N(t)) (2.1)

=

2∏
k=n

Ck
N(xk−1)

exp

{
−
∫ xk−1

xk

Ck
N(t)

dt

}
where again xn ≡ 0 by definition.

In the coalescent model with recombination [10] looking backwards in time, lineages can either
coalesce or recombine at a random position along the chromosome. When a lineage undergoes re-
combination, the lineage is split into two. The structure representing coalescent and recombination
events is the ancestral selection graph (ARG). In the ARG, different chromosomal segments (loci)
can have different genealogies and these genealogies are correlated (Figure 1B). McVean and Cardin
[17] and Marjoram and Wall [16] introduced Markovian approximations to the ARG called SMC and
SMC’ respectively. In the SMC, two genealogies at different segments separated by a recombination
event are necessarily different, while in the SMC’, these two genealogies are not necessarily different.
Figure 1B shows an example realization of the SMC or SMC’ process. In this paper, we analyze
these approximations to the ARG from pairwise coalescent times. Derivation for larger sample sizes
involve complicated likelihoods [19] that are beyond the scope of this manuscript.

For n = 2, let xi denote the pairwise coalescent time at the i-th locus; and let J be the number
of recombination events. In models with recombination, loci are contiguous chromosomal segments
delineated by recombination, so we will also use J to represent the number of loci. Under the SMC
process, the transition density from xi to xi+1, conditioned on a recombination event at locus i+ 1
is

fSMC(xi+1 | xi) =
1

xi

∫ xi+1∧xi

0

1

N(xi+1)
q1(u, xi+1)du, (2.2)
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Fig 1. A) Genealogy of n = 8 sampled individuals. xi is the time when two of i + 1 extant lineages coalesce. B)
Multiple genealogies along a chromosomal region.

where

qk(a, b) = exp

{
−
∫ b

a

kdt

N(t)

}
.

Given the current coalescent time xi, a recombination breakpoint u is sampled uniformly along the
height of the tree xi. At time u, one of the two branches is pruned with equal probability, and a new
coalescent time xi+1 is drawn with the standard coalescent rate.

Under the SMC’ process, the transition density from xi to xi+1, conditioned on a recombination
event at locus i+ 1 is

fSMC′(x
i+1 | xi) =


1
xi

∫ xi
0

∫ xi
u

1
N(t)q2(u, t)dtdu

{
xi+1 = xi

}
1

xiN(xi+1)

∫ xi+1

0
q2(u, xi+1)du xi+1 < xi

1
xiN(xi+1)q1(xi, xi+1)

∫ xi
0
q2(u, xi)du xi+1 > xi.

(2.3)

Given the current coalescent time xi, a recombination breakpoint u is sampled uniformly along the
height of the tree xi. At time u, one of the two branches is selected with equal probability and
split into two; one of the emanating branches follows the same trajectory back in time (old branch),
while the other emanating branch can coalesce further back in time with any of the remaining two
branches in the time interval (u, xi) with rate 2/N(t). Conditional on failing to coalesce with any of
the remaining branches in [u, xi], it coalesces with a branch emanating from the root at rate 1/N(t)
at some time xi+1 > xi. The old branch is then removed. When the new branch coalesces back with
the old branch, the resulting tree is the same as the original tree with coalescent time xi. This event
corresponds to the first case in equation 2.3.

The likelihood under SMC is given by

L(x1, . . . , xJ | N(t)) =
1

N(x1)
exp

{
−
∫ x1

0

dt

N(t)

}
J−1∏
i=1

fSMC(xi+1 | xi),
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and the likelihood under SMC’ for n = 2 is obtained from the previous expression replacing fSMC

by fSMC′ .

3. Bayes error rates in the standard coalescent

We will start with the simple hypothesis testing setting in which the two hypotheses are:

H1 : N(t) = aN0, T ≤ t ≤ T + S (3.1)

H2 : N(t) = bN0, T ≤ t ≤ T + S

with N(t) equal under H1 and H2 outside the interval [T, T + S]; a, b and S are positive constants
and T ≥ 0 (Figure 5). Our goal is to determine which hypothesis represents the true state of nature
under which the data were generated. For simplicity of notation, we associate the state of nature
with a parameter ϑ ∈ {1, 2} such that H1 : ϑ = 1 and H2 : ϑ = 2. A (binary) Bayes classifier or
decision rule ϑ(x) has the form

ϑ(x) =


1 BF12(x) > 1

2 BF12(x) < 1

ξ BF12(x) = 1

where BF12(x) is the Bayes factor for H1 vs H2, x is an observation of a random variable X, and
ξ ∼ Bernoulli(1/2) + 1. In the sequel, we drop the explicit argument and simply write BF12 in place
of BF12(x). Thus, if ϑ(x) returns 1, we infer that the data were generated under H1, whereas if
ϑ(x) returns 2, we infer that the data were generated under H2. In the case where each hypothesis
is assigned prior probability of one half, the Bayes factor is exactly the likelihood ratio, and the
probability of selecting H1 is the probability that BF12 > 1 plus half the probability that BF12 = 1.
In this case, the probability of correct classification is

P[ϑ(X) = ϑ] = 1
2

[
P(log BF12 > 0 | H1) + 1

2P(log BF12 = 0 | H1)
]

+ 1
2

[
P(log BF12 < 0 | H2) + 1

2P(log BF12 = 0 | H2)
]

When the prior is correct, the Bayes classifier is the optimal classifier, so that the probability of
correct classification using the Bayes classifier is the maximum achievable probability. The Bayes
error rate is 1−P[ϑ(X) = ϑ]. As such, by studying the properties of the Bayes classifier, we obtain
general limitations on inference for any classifier or test.

We first define some notation. Let X = (X1, X2, . . . , Xn−1) be the random vector of coalescent
times with distribution given by (2.1). When multiple genealogies are available, we will denote the
random variable corresponding to the collection of all J genealogies by XJ . Throughout, we abuse
notation by writing P[ϑ(X) = ϑ] – or P[ϑ(XJ) = ϑ] when J > 1 – to represent the probability of
correctly identifying the true state of nature.

The following theorems provide exact expressions for the probability of distinguishing between
two hypotheses of the form 3.1 from pairwise coalescent data under the coalescent with variable
population size (2.1).

Theorem 3.1. Consider the simple hypothesis testing problem of the form 3.1 when a single pairwise
coalescent time is observed (n = 2) and assign equal prior probabilities to both hypotheses. Then the
probability of correctly distinguishing between the two hypotheses is:

P[ϑ(X) = ϑ] =
1

2
+

1

2
e−Λ(T )

(
e
− δ∧S

(a∨b)N0 − e−
δ∧S

(a∧b)N0

)
where

δ ≡ abN0

b− a
log

b

a
=
abN0

a− b
log

a

b
≥ 0,
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and

Λ(T ) ≡
∫ T

0

1

N(t)
dt.

Proofs of all results can be found in the Appendix. Type I and type II error rates can be obtained
from the conditional probability expressions derived in the proof, and by modifying our proof to
consider a classifier that thresholds BF12(x) at ζ(α) for which P[BF12(X) > ζ(α) | H1] = 1−α, one
can perform power calculations for testing at level α where H1 is designated as the null. We mention
this as an obvious extension of our results, but do not pursue power calculations in the current work.

We now extend our previous result to the case when J independent genealogies from (2.1) are
available. When multiple loci or chromosomal segments are either coming from different chromosomes
or from the same chromosome at distant locations, genealogies at those locations can be assumed
to be independent. When n = 2 and J independent genealogies with likelihood (2.1) are available,
the sample configuration L = (L1, L2, L3) of the J = L1 + L2 + L3 pairwise coalescent times is
L ∼ Multinomial(J,p = (p1, p2, p3)), where L1 is the number of pairwise coalescent times that fall
in the interval (0, T ), L2 is the number of pairwise coalescent times that fall in the interval [T, T+S],
L3 is the number of pairwise coalescent times that are greater than T + S, and

p1 = P[X ≤ T ] = 1− e−Λ(T )

p2 = P[T < X ≤ T + S] = e−Λ(T ) − e−Λ(T+S)

p3 = P[X > T + S] = e−Λ(T+S).

For this setting we have the following result

Theorem 3.2. Consider the simple hypothesis testing problem of the form (3.1) when J independent
pairwise coalescent times are observed (n = 2, J ≥ 1). The probability of correctly distinguishing
between the two hypotheses is

P[ϑ(XJ) = ϑ] =
1

2
P(L2 = 0 | H1) +

1

2

∑
(`2,`3):`2>0

P(L = ` | H1)P[W ∗(`2) > `2δ − `3S | H1, L = `]

+
1

2

∑
(`2,`3):`2>0

P(L = ` | H2)P[W ∗(`2) < `2δ − `3S | H2, L = `]

where W ∗(`2) =
∑`2
j=1X

j
∗ is the sum of `2 independent truncated coalescent times Xj

∗ ∈ [0, S], each

exponentially distributed with rate (aN0)−1 under H1, and rate (bN0)−1 under H2; δ is defined as
in Theorem 3.1, and

` ∈
{
` = (`1, `2, `3) : `j ∈ N,

∑
j

`j = J
}
.

is an element of the support of Multinomial(J,p = (p1, p2, p3)).

To obtain numerical results, we approximate the distribution function P[W ∗(`2) < t] by Monte
Carlo. In the next section we apply these results to the problem of distinguishing between two
hypotheses about the human expansion out-of-Africa.

4. Human expansion out-of-Africa

Many of the statistical methods proposed over the last 15 years to infer effective population sizes from
genetic data have been applied to human whole genomes [15, 22, 24, 19, 28]. Several studies agree that
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non-African populations have experienced two severe bottlenecks, one attributed to the expansion
out-of-Africa and the other attributed to the separation of Asian and European populations. There
is, however, disagreement in the timing and length of such events.

Figure 2A shows a population history compatible with a human population history recovered from
autosomal DNA in standard coalescent units [15]. In order to convert coalescent parameters into real
time and size, time and N(t) need to be divided by the mutation rate per generation. Times need
be further multiplied by the generation time. To make our results comparable to previous studies
[15, 12], we will assume a generation time of 25 years and that effective population size is expressed
in units of 2.732× 104. That is, one unit in the y-axis of Figure 2A corresponds to 2.732× 104 and
one unit in the x-axis of the same plot corresponds to 68.3× 104 years. In our analysis, we compare
a population trajectory whose second bottleneck starts at time T = 102.45kya (0.15 in standard
units) versus a population trajectory whose second bottleneck starts earlier at time T + S with S
ranging from 30kyr to 150kyr. Our results from theorem 3.2 are depicted in Figure 2B. In order to
correctly differentiate between the two hypotheses with S = 130kyr with probability of at least 0.95,
we need at least 35 loci. A correct classification with probability of at least 0.95 is achievable with
at least 50 loci when S = 60kyr, that is, when the bottleneck started around 162kya versus 102kya.

Our results differ from previously published bounds based on coalescent Bayes error rates. Kim
et al. [12] indicate that the minimal J such that any classifier can distinguish between H1 and H2

with probability at least 0.95 and S = 130kyr is at least J = 10; while for S = 60kyr it is J ≈ 20.
A detailed analysis of the differences between our results and previously published bounds of [12] –
which reflect the fact that we give exact expressions instead of upper bounds on P[ϑ(XJ) = ϑ] –
can be found in section 8.

40000 60000 80000 100000 120000 140000

0.
75

0.
85

0.
95

B. Probability of correct classification

S (Interval length in Years)

P
(ϑ

)

J=20
J=30
J=35
J=50

Fig 2. A. Human population history in coalescent units compatible with previous findings from whole genomes [15].
B. Probability of correct classification P[ϑ(XJ ) = ϑ] as a function of the interval length S in years for several values
of J loci corresponding to the two hypotheses depicted in A. Red line indicates probability of 0.95.

4.1. Value of incorporating ancient samples

Thus far, we have not considered the effect of incorporating samples at different sampling times,
and have implicitly assumed that all samples are obtained at present. Results from Theorems 3.1
and 3.2 can be directly applied for the case when the two samples are obtained some time in the
past. In particular, we assess the change in P[ϑ(XJ) = ϑ] when samples are obtained at the end
of the bottleneck event at 102.45kya and when samples are obtained at 50kya. These scenarios are
equivalent to putting Λ(T ) = 0 and Λ(T ) = 1.54, respectively. Ancient DNA (aDNA) corresponding
to T = 50kya is available from ancient genomes [5]. Obtaining data from the population immediately
after the end of the event of interest is in some sense the optimal strategy for statistical inference on
that event, and can have an enormous positive effect on inference. This is made clear by Figure 3A,
which shows P[ϑ(XJ) = ϑ] for J = 2, 3, 5, 10, 15. For all but J = 2, P[ϑ(XJ) = ϑ] ≥ 0.95 can be
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achieved for S greater than about 115kyr. For J = 15, it is possible to achieve P[ϑ(XJ) = ϑ] ≥ 0.95
with S larger than about 15kyr. When the samples are available from 50kya, it is possible to achieve
P[ϑ(XJ) = ϑ] ≥ 0.95 with at least J = 20 loci.

20000 60000 100000 140000

0.
6

0.
7

0.
8

0.
9

1.
0

A. From samples dated 102.45kya

S (Interval length in Years)

P
(ϑ

)

J=3
J=5
J=10
J=15
J=20

20000 60000 100000 140000
0.

6
0.

7
0.

8
0.

9
1.

0

B. From samples dated 50kya

S (Interval length in Years)

P
(ϑ

)

Fig 3. Value of incorporating ancient samples. Probability of correct classification P[ϑ(XJ ) = ϑ] as a function of
S in years for the human bottleneck example when samples are obtained before the bottleneck (A) and when samples
are obtained around 50kya (B) .Curves for different number of loci (J) is indicated by the line patterns. Red line
indicates probability of 0.95.

5. Increasing the number of samples

Now we consider the case where n > 2. The following theorem gives an exact expression for the
probability of correct classification in (3.1) from a single locus (J = 1) when n = 3.

Theorem 5.1. Consider the simple hypothesis testing problem of the form 3.1 when a single geneal-
ogy of n = 3 individuals is observed. Define δ as in theorem 3.1, then the success rate of the optimal
classifier is

P[ϑ(X) = ϑ] =
1

2
+

1

4
e−3Λ(T )ξ(a, b,N0, T, S)

where

ξ(a, b,N0, T, S) = 3e2Λ(T )
[
e−

δ∧S
aN0 − e−

δ∧S
bN0

]
+ 3

[
e−

2(0∨( δ−S2 ∧S))+S

aN0 − e−
2(0∨( δ−S2 ∧S))+S

bN0

]
− 3

[
e−

δ∧S
aN0 − e−

δ∧S
bN0

]

+


0 S < 2

3δ

e−
2δ
bN0

(
1 + 2δ−3S

bN0

)
− e−

2δ
aN0

(
1 + 2δ−3S

aN0

)
2
3δ < S < 2δ

e−
2δ
aN0

(
4δ
aN0

+ 2
)

+ e−
2δ
bN0 − 3e

T−2δ−S
bN0 + e−

2δ+S
bN0

3T−3S−4δ
bN0

S > 2δ
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The proof is located in Appendix C. We can use this result to assess how much an additional sam-
ple helps in identifying the true population size history. Figure 4 shows four examples of P[ϑ(X) = ϑ]
as a function of a while fixing b = 1; increasing a is equivalent to increasing the separation between
the two hypothetical population size histories. In two of the examples, N(t) = 1 outside the interval
[T, T + S], and in the other two N(t) = et outside this interval. In both cases, the probability of
identifying the true effective population size function is considerably higher with n = 3 than n = 2
when |a − b| is not too close to zero. Thus, additional coalescent times can help considerably to
distinguish between alternative histories.

Fig 4. Effect of adding an additional sample. Probability of correct classification P[ϑ(X) = ϑ] as a function of a
for classification problem 3.1. In each case we put T = 1, S = 1/2, and b = 1. We compare the effect of adding one
more sample (n = 2 vs n = 3) for constant and exponential growth population trajectories.

It is clear from the proof of Theorem 5.1 that while it is possible to obtain exact expressions
for n > 3, the number of cases that must be treated will grow exponentially in n. Of course, it is
still possible to approximate P[ϑ(X) = ϑ] by simulation for arbitrary n. Here, we re-analyze the
out-of-Africa classification problem considered in Section 4 for n = 10 and J = 1, 5, 10, 20 as a
function of interval length S and compare to n = 2. The value of P[ϑ(XJ) = ϑ] is approximated by
10,000 Monte Carlo samples. Results are shown in Figure 5. In contrast to the case of n = 2, where
J = 50 was required to achieve P[ϑ(XJ) = ϑ] = 0.95 for S = 60Kyr, when n = 10 it is possible to
achieve the same success probability with J = 20. Thus, increasing the number of contemporaneous
sequences or loci gives sharper inference on the duration of the expansion out-of-Africa.

6. Bayes error rates in the sequentially Markov coalescent

We now consider the same classification problem as in (3.1) from J consecutive loci along a chro-
mosomal region. We assume the ideal scenario in which we observe the J pairwise coalescent times
(n = 2) corresponding to each of these J loci separated by J − 1 recombination events. Further, we
assume that effective population size trajectories under H1 and H2 are piece-wise constant functions
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40000 60000 80000 100000 120000
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8

0.
9

1.
0

Probability of correct classification for n=2 and n=10

S (Interval length in Years)

P
(ϑ

)

J=5 J=10 J=20

Fig 5. Effect of adding more samples in the out-of-Africa scenario Blue lines represent P[ϑ(X) = ϑ] as a
function of bottleneck length S for n = 10 and black lines represent P[ϑ(X) = ϑ] for n = 2. Different number of loci
are distinguished by line patterns. Red line indicates probability of 0.95.

over time such as the out-of-Africa scenario in Figure 2A. We then approximate P[ϑ(XJ) = ϑ]
by Monte Carlo from 10,000 simulations generated from each hypothesis under the two coalescent
models with recombination: SMC (2.2) and SMC’ (2.3).

We re-analyze the out-of-Africa classification problem considered in section 4 for n = 2 and
J = 2, 5, 10, 20, 30, 35 as function of interval length S under independent loci (3.2), SMC’ (2.3) and
SMC (2.2). We show that either under SMC’ or independent loci, P[ϑ(XJ) = ϑ] = 0.95 is achievable
with n = 35 loci. For J < 20, the Bayes error rate in SMC is smaller than the other two alternatives.
The significance of this is that it is not necessary to have many independently segregating loci to
make inference on features of the historical population size. Instead, virtually the same number of
non-independent loci separated by recombination events will suffice. The set of all dependent loci is
of course considerably larger than the largest set of independent loci, so the result suggests optimism
in the potential to reconstruct features of the population size trajectory in the relatively distant past.

7. Other scenarios

We now consider a more general classification problem when pairwise coalescent data is available at
a single locus or multiple loci :

H1 : N(t) = N1(t) (7.1)

H2 : N(t) = N2(t).

We consider the case where N2(t) = cN1(t) for c ∈ (0, 1), where analytic expressions for P[ϑ(X) = ϑ]
are available even when N1(t) is not piecewise constant.

Theorem 7.1. Consider the simple hypothesis testing problem of the form (7.1) such that N2(t) =
cN1(t) with 0 < c < 1 when a single pairwise coalescent time is observed (n = 2) and assign equal
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Fig 6. Sequentially Markov coalescent in the out-of-Africa scenario Probability of correct classification under
independent sampling, SMC’ and SMC. Different patterns represent different number of loci. Red line indicates
probability of 0.95.

prior probabilities to both hypotheses. Then the probability of correct classification is:

P[ϑ(X) = ϑ] =
1

2
c

c
1−c +

1

2

(
1− c

1
1−c

)
.

Theorem 7.2. Consider the conditions of Theorem 7.1 for J independent loci. The probability of
correct classification is

P[ϑ(XJ) = ϑ] =
1

2

(
1− 1

Γ(J)

[
γ

(
J,
−Jc log c

1− c

)
− γ

(
J,
J log c

c− 1

)])
. (7.2)

where γ(a, b) is the lower incomplete gamma function.

Figure 7 shows (7.2) as a function of c for different values of J . As expected, the larger J , the
larger the value of c at which high probability of identifying the true population size history can
be achieved. However, even for J = 100, we must have c ≈ 0.75 or smaller to give probability 0.95
of selecting the true population size history. Our results from Theorems 7.1 and 7.2 differ from
previously published Bayes error rates bounds [12]. In the following section, we present a more
detailed analysis of the differences between our exact expressions and the bounds [12].

8. Bounds on Bayes classification error.

Kim et al. [12] provided lower bounds on Bayes error rates from pairwise coalescent data. We now
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Fig 7. Left. Probability of correct classification P[ϑ(X) = ϑ] as in (7.2) when N2(t) = cN1(t) and J = 1 (Theorem
7.1). Right. P[ϑ(XJ ) = ϑ] as a function of c for several values of J.

provide a comparison of some of our results to these previously published bounds. In this section, we
will let Y denote a random coalescence time generated under H1 and Z denote a random coalescence
time generated under H2. Assuming a classification problem of the form (3.1) and prior probability
1/2 on H1 and H2, the Bayes error rate for any classifier is at least (1−Υ)/2 where

Υ = dTV(Y,Z) = dTV(µ, ν) ≡ sup
A
|µ(A)− ν(A)|

is the total variation distance between probability measures µ, ν, such that Y ∼ µ,Z ∼ ν. The
authors then apply the inequality

1

2
d2

TV ≤ d2
H

where dH is the Hellinger distance. Let P and Q be probability measures that are absolutely con-
tinuous with respect to some dominating measure λ, and let fP = dP

dλ , fQ = dQ
dλ be their respective

Radon-Nikodym derivatives. The Hellinger distance between P and Q is defined by

d2
H(P,Q) =

1

2

∫
(
√
fP −

√
fQ)2dλ.

In the case where λ is Lebesgue measure, fP and fQ are the densities of P and Q. The main result
of [12] is

Theorem 8.1 (Kim et al. [12], Theorem 1). Suppose n = 2 in (2.1). Then

d2
H(Y,Z) = e−

∫ T
0

1
N(t)

dt
(

1− e−
(a+b)S
2abN0

) (
√
a−
√
b)2

a+ b
.

We give a proof in the appendix that fills in some additional details of the proof in [12]. Rather than
obtaining bounds on the Bayes error rate using the Hellinger distance, we compute the probability
of correct inference on ϑ.

In Figure 8, we compare our results to the Hellinger bounds of [12] for different values of a, b,N0.
The upper bound based on the Hellinger distance from [12] is given by

1

2
+

1

2

√
2H2(f1, f2)

with H2(f1, f2) as in (F.3). Evidently the Hellinger bound is quite loose when |a − b| is not near
zero.
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Fig 8. Exact P[ϑ(X) = ϑ] (blue) and upper bound on this quantity from [12] (yellow) for different values of T, S,
and N0.

Kim et al. [12] use the inequality

d2
H(Y J , ZJ) ≤ Jd2

H(Y,Z), (8.1)

which holds when the J genealogies are independent, in combination with Theorem 8.1, to obtain
lower bounds on the error rate for J independent loci. They then use these lower bounds to calculate
quantities like bounds on the minimal S such that the correct hypothesis will be selected with
probability 0.95 for several examples. In contrast, our results give the exact value of P[ϑ(XJ) = ϑ],
which allows us to compute exactly the value of S to achieve the desired Bayes error rate for any J .
The results on the minimal number of loci J necessary to achieve a fixed error rate differ substantially
from the results in [12]. The looseness of the bound on P[ϑ(XJ) = ϑ] obtained using the Hellinger
distance is clear from Figure 8.

Moreover, the expression in (7.2) can be directly compared with Theorem 3.2 of [12]. Translated
into our notation and conventions, this result states that

P[ϑ(XJ) = ϑ] ≤ 1

2
+

1

4

√
J(n− 1)

(
1

c
− 1

)
. (8.2)

Figure 9 shows the bound from (8.2) along with the exact probability of identifying the true N(t)
as a function of c for n = 2 and different values of J . The bound is apparently quite loose when c is
not close to 1. It becomes trivial (greater than 1) for c ≈ 0.4 when J = 1 and c ≈ 0.7 when J = 10.

9. Bayes risk under conjugate priors

Although our focus has been on inferential limits for distinguishing among two states of nature, we
briefly consider estimation of a constant population size trajectory. We asses the risk of estimators
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Fig 9. Exact P[ϑ(XJ ) = ϑ] compared to the upper bound from Theorem 3.2 of [12] as a function of c for two
different values of J.

of the function Λ(x) in the case of n = 2 and N(t) = 1
c with conjugate priors on c. In this setting,

the coalescent time x is Exponential(c) with conjugate prior c ∼ Gamma(α, β) and for a sample of
J independent pairwise coalescent times we have

c | x(1), . . . , x(J) ∼ Gamma(α+ J, β + Jx̄)

with posterior expectation

E[c | x(1), . . . , x(J)] =
α+ J

β + Jx̄
.

Note that

JX̄ | c ∼ Gamma(J, c)

so the squared error risk of the Bayes estimator of c is

R(ĉ, c) :=

∫ ∞
0

(
α+ J

β + z
− c
)2

βα

Γ(α)
zJ−1e−czdz.

This can be evaluated in terms of analytic functions for any α, β, but for simplicity, we assume
α = β = 1, so that

R(ĉ, c) =

∫ ∞
0

(
1 + J

1 + z
− c
)2

e−zdz

= c
(
−(J + 1)ec

(
J2 + (J + 3)c− 1

)
EJ(c) + (J + 1)2 + c

)
where

EJ(c) =

∫ ∞
1

e−cz

zJ
dz,

is a generalization of the exponential integral function. Figure 10 shows the square root of risk as a
function of the number of loci J for values of J ∈ {1, . . . , 100} with c = 1. The root risk decreases
logarithmically in J ; it is approximately 0.1 for J = 100, and about 0.24 for J = 20. Thus, if one
wants the root risk to be small relative to the truth, it is necessary to have J rather large. In this
example, in order to have the root risk be about 10 percent the magnitude of the truth, we need
J ≈ 100.
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Fig 10. Root risk of Bayes estimator with α = β = 1 and c = 1.

10. Discussion

Availability of ancient and present-day DNA samples from a population allows statistical reconstruc-
tion of the effective population size trajectory. The effective population size is a measure of relative
genetic diversity whose actual magnitude is not easily interpreted in units of census population size
[31]. However, changes of effective population size over time are informative about the genetic his-
tory of the population. In this manuscript, we assess the ability to differentiate or classify between
alternative hypotheses about the effective population size.

Assessment of inferential limits in population genetic studies is becoming important in the face
of ongoing large-scale studies of genetic variation. Statistical methods are usually restricted to small
samples or rely on approximations and insufficient summary statistics. As such, choosing the optimal
subset of data with which to perform statistical inference is of great interest. Aspects of the data
and adequacy of the model will affect the ability to draw meaningful conclusions. Here, we have
eliminated the effect of factors such as data quality, sample selection and sequence alignment and
concentrated on the ideal scenario of having a complete realization of the genealogical process free
of errors. In practice, genealogies are not available and instead we observe DNA sequence variation;
therefore our results are upper bounds on the achievable probability of recovering the true population
size history in population genetic studies. These results provide guidance to practitioners in choosing
a sampling design subject to computational constraints. In particular, they give insight into the key
questions of which scientific hypotheses can be assessed, and the optimal choice of the number of
loci, sampling times, and individuals to include in a sample to achieve a specific inferential goal.
They also offer a possible explanation for disagreement in the literature over timing and duration
of historical genetic events such as the out-of-Africa human population bottleneck, suggesting that
some studies may simply not have sufficient data to distinguish between the hypotheses of interest
with high probability.

Fu and Li [6], Pluzhnikov and Donnelly [20], and Felsenstein [3] argued that in the constant
population model (θ = 2Nµ), accuracy of estimators of θ increases linearly in the number of in-
dependent loci, logarithmically in the number of samples, and is unaffected by sequence length. In
the coalescent with variable population size, Myers et al. [18] showed that estimators based on the
SFS cannot distinguish between two alternative hypotheses. Terhorst and Song [27] showed that
estimators of N(t), based on the same statistic SFS, have minimax rate of convergence that is log-
arithmic in the number of independent loci and independent of the number of individuals sampled.
Our results support a more complex view of the value of additional samples or loci. While in general,
the improvement in the probability of recovering the true population history appears to be sublinear
in both J and n, the improvement from adding an additional sample or locus depends greatly on
the details of the two hypotheses being considered. For example, increasing from n = 2 to n = 3
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samples can in some cases double the excess probability of recovering the truth P[ϑ(X) = ϑ]− 1/2
(the probability is always lower bounded by 1/2). In general, smaller improvements are seen from
increasing J , but we have demonstrated that high probability of recovering the true population size
history in the out-of-Africa example is attainable using values of n and J that are available from
modern datasets and for which exact computation is feasible. In addition, our results suggest that
incorporation of ancient genomes is the optimal strategy to improve inferential performance in the
expansion out-of-Africa problem, which is of significant interest in human population genetics.

Pluzhnikov and Donnelly [20] considered the constant population model with recombination and
argued that when the recombination rate is high, increasing the sequence length effectively increases
the number of independent loci. Indeed, when two genomic segments are separated by a recom-
bination event, individuals at these two segments (loci) derive from two different but correlated
genealogies. As the number of recombination events increases, the correlation between the two ge-
nealogies becomes weaker, and hence increasing the length of sequenced segments increases the
opportunity to observe a larger number of realizations from genealogically independent loci [19, 10].
Our results for the pairwise SMC’ model of recombination support the remarkable conclusion that
loci separated by recombination events have nearly the statistical value as the same number of
independent loci. This suggests that pairwise SMC’ is a very powerful framework for inference of
population size trajectories. An interesting future direction is to explore the effect of increasing the
number of individuals in the SMC’.

imsart-generic ver. 2014/10/16 file: testing-hetero.tex date: January 17, 2018



J. Johndrow and J. Palacios/Exact inferential limits for the coalescent 16

Appendix A: Proof of theorem 3.1

Proof. Define

Λ(w, x) ≡
∫ x

w

1

N(t)
dt.

For shorthand we write Λ(x) = Λ(0, x). Λ : R+ → R+ is a monotone strictly increasing function,
which is enough to guarantee the existence of an inverse

Λ−1(t) = x⇐⇒ Λ(x) = t,

The likelihood ratio for H1 vs H2 (3.1) can be expressed by

log BF12(x) =


0 x < T
log b

a −
x−T
aN0

+ x−T
bN0

T ≤ x < T + S
S
bN0
− S

aN0
T + S ≤ x

(A.1)

Notice that the waiting time until the coalescent event has survival function

P[X > x] = e−Λ(x).

Now we want to calculate P[ϑ(X) = 1 | H1]. Assume that if log BF12(x) = 0 we select either H1 or
H2 by flipping a fair coin. If a > b then

log BF12(x) > 0, T ≤ x ≤ T + S ⇐⇒ x > δ + T,

and if b > a

log BF12(x) > 0, T ≤ x ≤ T + S ⇐⇒ x < δ + T.

Assuming a > b and denoting fi(x) the density under Hi for i = 1, 2, we have

P[ϑ(X) = 1 | H1] =
1

2
P[X < T | H1] +

∫ T+S

T

1

{
x >

ab

b− a
N0 log

b

a
+ T

}
f1(x)dx

+ 1{b < a}P[X > T + S | H1]

=
1

2
(1− e−Λ(T )) +

∫ T+S

T+(δ∧S)

e−Λ(T ) 1

aN0
e−

x−T
aN0 dx+ 1{b<a}e

−Λ(T )− S
aN0

=
1

2
(1− e−Λ(T )) + e−Λ(T )

[
e−

δ∧S
aN0 − e−

S
aN0

]
+ 1{b<a}e

−Λ(T )− S
aN0 ,

and

P[ϑ(X) = 2 | H2] =
1

2
P[X < T | H2] +

∫ T+S

T

1

{
x <

ab

b− a
N0 log

b

a
+ T

}
f2(x)dx

+ 1{a < b}P[X > T + S | H2]

=
1

2
(1− e−Λ(T )) +

∫ T+(δ∧S)

T

e−Λ(T ) 1

bN0
e−

x−T
bN0 dx+ 1{a<b}e

−Λ(T )− S
bN0

=
1

2
(1− e−Λ(T )) + e−Λ(T )

[
1− e−

δ∧S
bN0

]
+ 1{a<b}e

−Λ(T )− S
bN0 .

Assuming equal prior probability of H1 and H2 we get

P[ϑ(X) = ϑ] =
1

2
(1− e−Λ(T ) + e

−Λ(T )− S
(a∨b)N0 )

imsart-generic ver. 2014/10/16 file: testing-hetero.tex date: January 17, 2018



J. Johndrow and J. Palacios/Exact inferential limits for the coalescent 17

+
1

2
e−Λ(T )

[
e−

δ∧S
aN0 − e−

S
aN0

]
+

1

2
e−Λ(T )

[
1− e−

δ∧S
bN0

]
=

1

2
+

1

2
e−Λ(T )

(
e
− S

(a∨b)N0 − e−
S
aN0

)
+

1

2
e−Λ(T )

(
e−

δ∧S
aN0 − e−

δ∧S
bN0

)
=

1

2
+

1

2
e−Λ(T )

(
e−

δ∧S
aN0 − e−

δ∧S
bN0

)
.

This assumed a > b. If instead b > a then the inequalities in the integrand when we integrate
between T and T + S would be reversed, so the exact expression for any a > 0, b > 0 is

P[ϑ(X) = ϑ] =
1

2
+

1

2
e−Λ(T )

(
e
− δ∧S

(a∨b)N0 − e−
δ∧S

(a∧b)N0

)
. (A.2)

Appendix B: Proof of Theorem 3.2

Proof. Fix an integer J ≥ 1 and define a1 = a, a2 = b for ease of notation. We first define the
following auxiliary functions

Qi(T ) ≡ e−
∫ T
0

dt
Ni(t) , Qi(T, T + S) ≡ e−

∫ T+S
T

dt
Ni(t)

qi(T ) ≡ 1

Ni(T )
e
−

∫ T
0

dt
Ni(t) , qi(T, T + S) ≡ 1

Ni(T + S)
e
−

∫ T+S
T

dt
Ni(t)

The coalescent density for a coalescent time with effective population size trajectory N for the
intervals (0, T ] and (T + S,∞) and Ni for the interval (T, T + S] is

fi(t) =


q(t) 0 < t < T

Q(T )qi(T, t) T ≤ t < T + S

Q(T )Qi(T, T + S)q(T + S, t) t ≥ T + S

so that the likelihood ratio for a single time point can be expressed as

f1(xj)

f2(xj)
=

[
q1(T, xj)

q2(T, xj)

]1{T≤xj<T+S} [
Q1(T, T + S)

Q2(T, T + S)

]1{xj≥T+S}

=

[
b

a
e−

(b−a)(xj−T )
abN0

]1{T≤xj<T+S} [
e−S

(b−a)
abN0

]1{xj≥T+S}
,

giving

log

J∏
j=1

f1(xj)

f2(xj)
=

J∑
j=1

1{T < xj ≤ T + S}
[
log

b

a
− (xj − T )

(b− a)

abN0

]

−
J∑
j=1

1{xj > T + S}S(b− a)

abN0
.

Defining

`1 =

J∑
j=1

1{xj ≤ T}, `2 =

J∑
j=1

1{T < xj ≤ T + S}, `3 =

J∑
j=1

1{xj ≥ T + S},
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we have that log BF12 > 0 when

J∑
j=1

1{T < xj ≤ T + S}
[
log

b

a
− (xj − T )

(b− a)

abN0

]
>

J∑
j=1

1{xj > T + S}S(b− a)

abN0

`2

(
log

b

a
+ T

(b− a)

abN0

)
− `3S

(b− a)

abN0
>

(b− a)

abN0

∑
j:xj∈[T,T+S]

xj

`2

(
abN0

a− b
log

a

b
+ T

)
− `3S <

∑
j:xj∈[T,T+S]

xj ,

`2 (δ + T )− `3S <
∑

j:xj∈[T,T+S]

xj ,

where the inequality reversed since (b− a)/(abN0) is negative.
Now, log BF12 = 0 only if xj < T for all j = 1, . . . , J . In this case, we flip a fair coin and accept

H1 if it shows heads. Moreover, if L2 = 0 and L3 > 0, then log BF12 > 0. Denote by L = (L1, L2, L3)
the random vector whose observed entries are ` = (`1, `2, `3). Notice that for a generic coalescent
time X

L | Hi ∼ Multinomial(J,p)

p1 = P[X ≤ T ] = (1− e−Λ(T ))

p2 = P[T < X ≤ T + S] = (e−Λ(T ) − e−Λ(T )− S
aiN0 )

p3 = P[X > T + S] = e
−Λ(T )− S

aiN0 ,

and we have

P[ϑ(XJ) = 1 | H1] =
1

2
P(L1 = J | H1) + P(L2 = 0, L3 > 0 | H1)

+
∑

(`2,`3):`2>0

P(L = ` | H1)P(BF12(XJ) > 0 | L = `,H1)

with

P[BF12(XJ) > 0 | L = `,H1] = P

 ∑
j:Xj∈[T,T+S]

Xj > `2(δ + T )− `3S
∣∣∣∣L = `


= P

 ∑
j:Xj∈[T,T+S]

Xj > `2(δ + T )− `3S
∣∣∣∣T < Xj ≤ T + S


= P

 `2∑
j=1

Xj
∗ > `2δ − `3S

∣∣∣∣Xj
∗ < S


for Xj

∗ independent exponential random variables with rate (aN0)−1. So letting W ∗(`2) =
∑`2
j=1X

j
∗ ,

the relevant probabilities involve the CDF of the sum of `2 many independent exponentials with
rate (aN0)−1 truncated to the interval [0, S], and we have

P[ϑ(XJ) = 1 | H1] =
1

2
P(L1 = J | H1) + P(L2 = 0, L3 > 0 | H1)

+
∑

(`2,`3):`2>0

P(L = ` | H1)P[W ∗(`2) > `2δ − `3S | H1].
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It follows then that since P(L1 = J | H1) = P(L1 = J | H2), the Bayes error rate can be written as

P[ϑ(XJ) = ϑ] =
1

2
P(L2 = 0 | H1) (B.1)

+
1

2

∑
(`2,`3):`2>0

P(L = ` | H1)P[W ∗(`2) > `2δ − `3S | H1]

+
1

2

∑
(`2,`3):`2>0

P(L = ` | H2)P[W ∗(`2) < `2δ − `3S | H2].

Appendix C: Proof of Theorem 5.1

Recall we are studying the case where H1 : N = N1(t) and H2 : N = N2(t) and

N1(t) =


N(t) 0 ≤ t ≤ T
aN0 T ≤ t ≤ T + S

N(t) t > T + S

N2(t) =


N(t) 0 ≤ t ≤ T
bN0 T ≤ t ≤ T + S

N(t) t > T + S

for N(t) any bounded, strictly non-negative function.

1. Case 1: 0 < x2 < x1 < T . In this case the likelihood under either H1 or H2 is the same

L(x2, x1 | N(t)) =
3

N(x2)N(x1)
e−2Λ(x2)−Λ(x1)

and so

log BF12(x) = 0.

2. Case 2: 0 < x2 < T < x1 < T + S. In this case the likelihood under Hi is

L(x2, x1 | N(t)) =
3

N(x2)

1

aiN0
e
−2Λ(x2)−Λ(T )− x1−TaiN0

so designating a1 = a, a2 = b as before

log BF12(x) = log
b

a
− x1 − T

aN0
+
x1 − T
bN0

= log
b

a
+

(a− b)(x1 − T )

abN0
.

3. Case 3: 0 < x2 < T < T + S < x1. In this case the likelihood under Hi is

L(x2, x1 | N(t)) =
3

N(x2)

1

N(x1)
e
−2Λ(x2)−Λ(T )− S

aiN0
−Λ(T+S,x1)

so

log BF12(x) =
S

bN0
− S

aN0
=

(a− b)S
abN0

.
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4. Case 4: 0 < T < x2 < x1 < T + S. In this case the likelihood under Hi is

L(x2, x1 | N(t)) =
3

aiN0

1

aiN0
e
−3Λ(T )− 3(x2−T )

aiN0
− x1−x2aiN0

=
3

a2
iN

2
0

e−3Λ(T )e
− 2x2+x1−3T

aiN0

so

log BF12(x) = 2 log
b

a
− 2x2 + x1 − 3T

aN0
+

2x2 + x1 − 3T

bN0

= 2 log
b

a
+

(a− b)(2x2 + x1 − 3T )

abN0

5. Case 5: 0 < T < x2 < T + S < x1. In this case the likelihood under Hi is

L(x2, x1 | N(t)) =
3

aiN0

1

N(x1)
e
−2Λ(T )− 2(x2−T )

aiN0
−Λ(T )− S

aiN0
−Λ(T+S,x1)

=
3

aiN0

1

N(x1)
e−3Λ(T )−Λ(T+S,x1)e

− 2(x2−T )+S
aiN0

so

log BF12(x) = log
b

a
− 2(x2 − T ) + S

aN0
+

2(x2 − T ) + S

bN0

= log
b

a
+

(a− b)(2(x2 − T ) + S)

abN0

6. Case 6: 0 < T < T + S < x2 < x1. In this case the likelihood under Hi is

L(x2, x1 | N(t)) =
3

N(x2)

1

N(x1)
e
−2Λ(T )− 2S

aiN0
−2Λ(T+S,x2)−Λ(T )− S

aiN0
−Λ(T+S,x1)

=
3

N(x2)

1

N(x1)
e−3Λ(T )−2Λ(T+S,x2)−Λ(T+S,x1)e

− 3S
aiN0

so

log BF12(x) = − 3S

aN0
+

3S

bN0
=

3(a− b)S
abN0

log BF12(x) =



0 0 < x2 < x1 < T

log b
a + (a−b)(x1−T )

abN0
0 < x2 < T < x1 < T + S

(a−b)S
abN0

0 < x2 < T < T + S < x1

2 log b
a + (a−b)(x1+2x2−3T )

abN0
0 < T < x2 < x1 < T + S

log b
a + (a−b)(2x2−2T+S)

abN0
0 < T < x2 < T + S < x1

3(a−b)S
abN0

0 < T < T + S < x2 < x1

We go line by line calculating the components of P[ϑ(X) = ϑ | H1]. Designate each of the six
pieces of the expression by Qj , j = 1, 2, . . . , 6.

Q1 =
1

2
P[X1 < T ] =

1

2

∫ T

0

∫ T

x2

3

N(x2)N(x1)
e−2Λ(x2)−Λ(x1)
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=
1

2

∫ T

0

(e−Λ(x2) − e−Λ(T ))
3

N(x2)
e−2Λ(x2)dx2

=
1

2

∫ T

0

3

N(x2)
e−3Λ(x2)dx2 − e−Λ(T )

∫ T

0

3

N(x2)
e−2Λ(x2)dx2

=
1

2

(
1− e−3Λ(T ) − e−Λ(T ) 3

2

∫ T

0

2

N1(x2)
e−2Λ(x2)dx2

)

=
1

2

(
1− e−3Λ(T ) − e−Λ(T ) 3

2
(1− e−2Λ(T ))

)
=

1

2
+

1

4
e−3Λ(T ) − 3

4
e−Λ(T )

Now define

δ =
abN0

a− b
log

a

b

then we have

Q2 =

∫ T

0

∫ T+S

T

3

N(x2)N(x1)
e−2Λ(x2)−Λ(x1)1

{
log

b

a
+

(a− b)(x1 − T )

abN0
> 0

}
dx1dx2

=

∫ T

0

∫ T+S

T+(δ∧S)

3

N(x2)N(x1)
e−2Λ(x2)−Λ(x1)dx1dx2

= (e−Λ(T )− δ∧SaN0 − e−Λ(T )− S
aN0 )

3

2

∫ T

0

2

N(x2)
e−2Λ(x2)dx2

= (e−
δ∧S
aN0 − e−

S
aN0 )e−Λ(T ) 3

2
(1− e−2Λ(T ))

For case 3

Q3 = 1{a > b}
∫ T

0

∫ ∞
T+S

3

N(x2)N(x1)
e−2Λ(x2)−Λ(x1)dx1dx2

= 1{a > b}e−Λ(T )− S
aN0

3

2

∫ T

0

2

N(x2)
e−2Λ(x2)dx2

=
3

2
1{a > b}e−Λ(T )− S

aN0 (1− e−2Λ(T ))

Case 4

Q4 =

∫ T+S

T

∫ T+S

x2

3

N(x2)N(x1)
e−2Λ(x2)−Λ(x1)1 {x1 > T + 2(T − x2 + δ)} dx1dx2

=

∫ T+S

T

∫ T+S

x2

3

a2N2
0

e−3Λ(T )e−
2x2+x1−3T

aN0 1 {x1 > T + 2(T − x2 + δ)} dx1dx2.

The inequalities

0 < T < x2 < x1 < T + S, x1> T + 2(T − x2 + δ)

reduce to

2δ

3
< S < 2δ,

1

3
(3T + 2δ)< x1 < S + T,

1

2
(3T − x1 + 2δ) < x2 < x1
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or

S > 2δ

and either
1

3
(3T + 2δ) < x1 < T + 2δ,

1

2
(3T − x1 + 2δ) < x2 < x1

or

T + 2δ < x1 < S + T, T < x2 < x1.

So then we can express Q4 as

Q4 =


0 S < 2

3δ

Q41
2
3δ < S < 2δ

Q42 S > 2δ

where

Q41 =

∫ T+S

1
3 (3T+2δ)

∫ x1

1
2 (3T−x1+2δ)

3

a2N2
0

e−3Λ(T )e−
2x2+x1−3T

aN0 dx2dx1

=
1

2
e−3Λ(T )

(
e−

3S
aN0 − e−

2δ
aN0

aN0 − 3S + 2δ

aN0

)
and

Q42 =

∫ T+2δ

1
3 (3T+2δ)

∫ x1

1
2 (3T−x1+2δ)

3

a2N2
0

e−3Λ(T )e−
2x2+x1−3T

aN0 dx2dx1

+

∫ T+S

T+2δ

∫ x1

T

3

a2N2
0

e−3Λ(T )e−
2x2+x1−3T

aN0 dx2dx1

=
1

2
e−3Λ(T )

(
e−

6δ
aN0 + e−

2δ
aN0

4δ − aN0

aN0

)
+

1

2
e−3Λ(T )

(
e−

3S
aN0 − 3e−

S
aN0 − e−

6δ
aN0 + 3e−

2δ
aN0

)
=

(
1

2
e−3Λ(T )

(
e−

2δ
aN0

(
4δ

aN0
+ 2

)
+ e−

3S
aN0 − 3e−

S
aN0

))
And now for case 5

Q5 =

∫ T+S

T

∫ ∞
T+S

f1(x1, x2)1

{
log

b

a
+

(a− b)(2(x2 − T ) + S)

abN0
> 0

}
dx1dx2

=

∫ T+S

T

∫ ∞
T+S

3

N(x2)N(x1)
e−2Λ(x2)−Λ(x1)1

{
x2 > T +

δ

2
− S

2

}
dx1dx2

=

∫ T+S

T+{0∨(( δ2−
S
2 )∧S)}

3

N(x2)
e−2Λ(x2)dx2

∫ ∞
T+S

1

N(x1)
e−Λ(x1)dx1

=
3

2
e−Λ(T )− S

aN0

∫ T+S

T+{0∨(( δ2−
S
2 )∧S)}

2

N(x2)
e−2Λ(x2)dx2

=
3

2
e−Λ(T )− S

aN0 (e−2Λ(T+{0∨(( δ2−
S
2 )∧S)}) − e−2Λ(T+S))

=
3

2
e−3Λ(T )− S

aN0 (e−
2{0∨(( δ

2
−S

2
)∧S)}

aN0 − e−
2S
aN0 )
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Finally case 6

Q6 = 1{a > b}
∫ ∞
T+S

∫ ∞
x2

3

N(x2)

1

N(x1)
e−2Λ(x2)−Λ(x1)dx1dx2

= 1{a > b}
∫ ∞
T+S

3

N(x2)
e−3Λ(x2)dx2

= 1{a > b}e−3Λ(T )− 3S
aN0

Now we can get the other component fairly easily. We repeat the calculations conditioning on H2

Q1 =
1

2

(
1 +

1

2
e−3Λ(T ) − 3

2
e−Λ(T )

)
case 2

Q2 =

∫ T

0

∫ T+S

T

3

N(x2)N(x1)
e−2Λ(x2)−Λ(x1)1

{
log

b

a
+

(a− b)(x1 − T )

abN0
< 0

}
dx1dx2

=

∫ T

0

∫ T+(δ∧S)

T

3

N(x2)N(x1)
e−2Λ(x2)−Λ(x1)dx1dx2

= (e−Λ(T ) − e−Λ(T )− δ∧SbN0 )
3

2

∫ T

0

2

N(x2)
e−2Λ(x2)dx2

= (1− e−
δ∧S
bN0 )e−Λ(T ) 3

2
(1− e−2Λ(T ))

For case 3

Q3 = 1{b > a}
∫ T

0

∫ ∞
T+S

3

N(x2)N(x1)
e−2Λ(x2)−Λ(x1)dx1dx2

= 0

Case 4

Q4 =

∫ T+S

T

∫ T+S

x2

3

N(x2)N(x1)
e−2Λ(x2)−Λ(x1)1 {x1 < T + 2(T − x2 + δ)} dx1dx2

=

∫ T+S

T

∫ T+S

x2

3

b2N2
0

e−3Λ(T )e−
2x2+x1−3T

bN0 1 {x1 < T + 2(T − x2 + δ)} dx1dx2.

The inequalities

0 ≤ T ≤ x2 ≤ x1 ≤ T + S, x1 ≤ T + 2(T − x2 + δ), δ > 0

reduce to

0 ≤ S ≤ 2δ

3
, T ≤ x1 ≤ S + T, T ≤ x2 ≤ x1, or

2δ

3
≤ S ≤ 2δ,

{
T < x1 ≤ 1

3 (3T + 2δ), T ≤ x2 ≤ x1 or
1
3 (3T + 2δ),≤ x1 ≤ T + S T ≤ x2 ≤ 1

2 (3T − x1 + 2δ)

or

S > 2δ,

{
T < x1 <

1
3 (3T + 2δ), T < x2 < x1or

1
3 (3T + 2δ) ≤ x1 ≤ T + 2δ, T < x2 ≤ 1

2 (3T − x1 + 2δ)
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so

Q4 =


Q41 0 ≤ S ≤ 2δ

3

Q42
2δ
3 ≤ S ≤ 2δ

Q43 S > 2δ

,

where

Q41 =
1

2
e−3Λ(T )

(
e−

3S
bN0 − 3e−

S
bN0 + 2

)
Q42 =

1

2
e−3Λ(T )

(
e−

2δ
bN0 (bN0 + 2δ − 3S)

bN0
− 3e−

S
bN0 + 2

)

Q43 =
1

2bN0
e−3Λ(T )e−

2δ+S
bN0

(
bN0

(
2e

2δ+S
bN0 + e

S
bN0 − 3e

T
bN0

)
+ e

S
bN0 (−4δ − 3S + 3T )

)
Case 5

Q5 =

∫ T+S

T

∫ ∞
T+S

f1(x1, x2)1

{
log

b

a
+

(a− b)(2(x2 − T ) + S)

abN0
< 0

}
dx1dx2

=

∫ T+S

T

∫ ∞
T+S

3

N(x2)N(x1)
e−2Λ(x2)−Λ(x1)1

{
x2 < T +

δ

2
− S

2

}
dx1dx2

=

∫ T+{0∨(( δ2−
S
2 )∧S)}

T

3

N(x2)
e−2Λ(x2)dx2

∫ ∞
T+S

1

N(x1)
e−Λ(x1)dx1

=
3

2
e−Λ(T )− S

bN0

∫ T+{0∨(( δ2−
S
2 )∧S)}

T

2

N(x2)
e−2Λ(x2)dx2

=
3

2
e−Λ(T )− S

bN0 (e−2Λ(T ) − e−2Λ(T+{0∨(( δ2−
S
2 )∧S)}))

=
3

2
e−3Λ(T )− S

bN0 (1− e−
2{0∨(( δ

2
−S

2
)∧S)}

bN0 )

Case 6

Q6 = 1{b > a}
∫ ∞
T+S

∫ ∞
x2

3

N(x2)

1

N(x1)
e−2Λ(x2)−Λ(x1)dx1dx2

= 0

Appendix D: Proof of theorem 7.1

Proof. Define Λi(t) =
∫ t

0
1

Ni(s)
ds, we then have

P[ϑ(X) = 1 | H1] =

∫ ∞
0

1

{(
1

c
− 1

)
Λ1(x) > log

1

c

}
1

N1(x)
e
−

∫ x
0

1
N1(t)

dt
dx

= P

[
X > Λ−1

1

(
c

1− c
log

1

c

)
| H1

]
= e−Λ1(Λ−1

1 ( c
1−c log 1

c )) = e
c log c
1−c

= c
c

1−c ,

which implicitly assumed that c < 1. Similarly

P[ϑ(X) = 2 | H2] =

∫ ∞
0

1

{
Λ2(x)− Λ1(x) < log

N1(x)

N2(x)

}
1

N2(x)
e
−

∫ x
0

1
N2(t)

dt
dx
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=

∫ ∞
0

1 {Λ2(x)(c− 1) > log c} 1

N2(x)
e
−

∫ x
0

1
N2(t)

dt
dx

= P

[
X < Λ−1

2

(
1

c− 1
log c

)
| H2

]
= 1− e−Λ2(Λ−1

2 ( 1
c−1 log c))

= 1− c
1

1−c

so then

P[ϑ(X) = ϑ] =
1

2
c

c
1−c +

1

2

(
1− c

1
1−c

)
.

Appendix E: Proof of theorem 7.2

Proof. Define Λi(t) =
∫ t

0
1

Ni(s)
ds and notice that

BF12 =

J∏
j=1

1
N1(xj)e

−
∫ xj
0

1
N1(t)

dt

1
N2(xj)e

−
∫ xj
0

1
N2(t)

dt
=

J∏
j=1

N2(xj)e
−

∫ xj
0

1
N1(t)

dt

N1(xj)e
−

∫ xj
0

1
N2(t)

dt

= cJe−
∑J
j=1 Λ1(xj)−Λ2(xj) = cJe−

∑J
j=1 Λ1(xj)(1− 1

c )

log BF12 = J log c−
(

1− 1

c

) J∑
j=1

Λ1(xj)

so then

P [log BF12 > 0 | H1] = P

J log c >

(
1− 1

c

) J∑
j=1

Λ1(Xj) | H1


= P

(1

c
− 1

) J∑
j=1

Λ1(Xj) > J log
1

c
| H1


= P

 J∑
j=1

Λ1(Xj) > J
c

1− c
log

1

c
| H1

 .
Since

P[Λ1(X) > s | H1] = P[X > Λ−1
1 (s)] = e−s,

we have

P [log BF12 > 0 | H1] = P

[
W > J

c

1− c
log

1

c

]
,

where W is the sum of J independent unit rate exponentials, so W ∼ Gamma(J, 1) and

P [log BF12 > 0 | H1] = 1− 1

Γ(J)
γ

(
J, J

c

1− c
log

1

c

)
,
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where γ(α, β) is the lower incomplete Gamma function. Similar calculations give us that

P [log BF12 < 0 | H2] = P

J log c < (c− 1)

J∑
j=1

Λ2(Xj) | H2


= P

[
J∑
i=1

Λ2(Xj) < J
1

c− 1
log c | H2

]

= P

[
W < J

1

c− 1
log c

]
=

1

Γ(J)
γ

(
J, J

1

c− 1
log c

)

giving us

P[ϑ(XJ) = ϑ] =
1

2

(
1− 1

Γ(J)
γ

(
J, J

c

1− c
log

1

c

)
+

1

Γ(J)
γ

(
J, J

1

c− 1
log c

))
,

as claimed.

Appendix F: Proof of Theorem 8.1

We have

fi(x) =


1

N(x)e
−

∫ x
0

1
N(t)

dt x < T

1
aiN0

e−
∫ T
0

1
N(t)

dte
− x−T
aiN0 T ≤ x < T + S

1
N(x)e

−
∫ T
0

1
N(t)

dte
− S
aiN0 e−

∫ x
T+S

1
N(t)

dt T + S ≤ x
(F.1)

where fi(x) is the density of a single coalescent time under Hi. Define

∆12(x) ≡ (
√
f1(x)−

√
f2(x))2.

So now we calculate∫
(
√
f1(x)−

√
f2(x))2dx =

∫ T

0

∆12(x)dx+

∫ T+S

T

∆12(x)dx+

∫ ∞
T+S

∆12(x)dx

clearly the first term on the right is zero so∫
∆12(x)dx =

∫ T+S

T

∆12(x)dx+

∫ ∞
T+S

∆12(x)dx.

Observe∫ T+S

T

∆12(x)dx =

∫ T+S

T

(
1√
aN0

e−
1
2

∫ T
0

1
N(t)

dte−
1
2
x−T
aN0 − 1√

bN0

e−
1
2

∫ T
0

1
N(t)

dte−
1
2
x−T
bN0

)2

dx

= e−
∫ T
0

1
N(t)

dt

∫ T+S

T

(
1√
aN0

e−
1
2
x−T
aN0 − 1√

bN0

e−
1
2
x−T
bN0

)2

dx,

then

e
∫ T
0

1
N(t)

dt

∫ T+S

T

∆12(x)dx = 2− e−
S
aN0 − e−

S
bN0 − 4b(1− e−

(a+b)S
2abN0 )

√
a

(a+ b)
√
b

, (F.2)
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and now∫ ∞
T+S

∆12(x)dx =

∫ ∞
T+S

(
1√
N(x)

e−
1
2

∫ T
0

1
N(t)

dte−
1
2

S
aN0 e−

1
2

∫ x
T+S

1
N(t)

dt

− 1√
N(x)

e−
1
2

∫ T
0

1
N(t)

dte−
1
2

S
bN0 e−

1
2

∫ x
T+S

1
N(t)

dt

)2

dx

=

∫ (
e−

1
2

S
aN0 − e−

1
2

S
bN0

)2
(

1√
N(x)

e−
1
2

∫ T
0

1
N(t)

dte−
1
2

∫ x
T+S

1
N(t)

dt

)2

dx

=
(
e−

1
2

S
aN0 − e−

1
2

S
bN0

)2

e−
∫ T
0

1
N(t)

dt

∫ ∞
T+S

1

N(x)
e−

∫ x
T+S

1
N(t)

dtdx

=
(
e−

1
2

S
aN0 − e−

1
2

S
bN0

)2

e−
∫ T
0

1
N(t)

dt

(
−e−

∫ x
T+S

1
N(t)

dt

∣∣∣∣∞
T+S

)

=
(
e−

1
2

S
aN0 − e−

1
2

S
bN0

)2

e−
∫ T
0

1
N(t)

dt

and adding this to (F.2)

H2(f1, f2) =

∫
∆12(x)dx = e−

∫ T
0

1
N(t)

dt
(

1− e−
(a+b)S
2abN0

) (a+ b− 2
√
ab)

a+ b

= e−
∫ T
0

1
N(t)

dt
(

1− e−
(a+b)S
2abN0

) (
√
a−
√
b)2

a+ b
, (F.3)

which is the same as the last displayed equation on Kim et al. [12, p 11].
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Gély, Eligio Vacca, Manuel R. González Morales, Lawrence G. Straus, Christine Neugebauer-
Maresch, Maria Teschler-Nicola, Silviu Constantin, Oana Teodora Moldovan, Stefano Be-
nazzi, Marco Peresani, Donato Coppola, Martina Lari, Stefano Ricci, Annamaria Ronchitelli,
Frédérique Valentin, Corinne Thevenet, Kurt Wehrberger, Dan Grigorescu, Hélène Rougier,
Isabelle Crevecoeur, Damien Flas, Patrick Semal, Marcello A. Mannino, Christophe Cupillard,
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