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ABSTRACT
Longitudinal molecular data of rapidly evolving viruses and pathogens provide information about disease
spread and complement traditional surveillance approaches based on case count data. The coalescent is
used to model the genealogy that represents the sample ancestral relationships. The basic assumption is
that coalescent events occur at a rate inversely proportional to the effective population size Ne(t), a time-
varying measure of genetic diversity. When the sampling process (collection of samples over time) depends
on Ne(t), the coalescent and the sampling processes can be jointly modeled to improve estimation of Ne(t).
Failing to do so can lead to bias due to model misspecification. However, the way that the sampling process
depends on the effective population size may vary over time. We introduce an approach where the sampling
process is modeled as an inhomogeneous Poisson process with rate equal to the product of Ne(t) and a time-
varying coefficient, making minimal assumptions on their functional shapes via Markov random field priors.
We provide efficient algorithms for inference, show the model performance vis-a-vis alternative methods
in a simulation study, and apply our model to SARS-CoV-2 sequences from Los Angeles and Santa Clara
counties. The methodology is implemented and available in the R package adapref. Supplementary files
for this article are available online.
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1. Introduction
Molecular sequence data, within the framework of phylody-
namics (Grenfell et al. 2004), is increasingly being used to track
disease spread caused by rapidly evolving viruses and pathogens
such as Influenza viruses (Rambaut et al. 2008), Zika (Faria et al.
2016), and SARS-CoV-2 (Hadfield et al. 2018). The coalescent
process (Kingman 1982a, 1982b), a probability model of gene
genealogies, depends on a parameter called effective population
size Ne(t), which is a time-varying measure of genetic diversity.
When disease dynamics can be modeled by simple epidemio-
logical models such as Susceptible-Infected-Recovered, the coa-
lescent effective population size can be expressed in terms of
transmission rates and prevalence (Volz et al. 2009; Frost and
Volz 2010). Accurate and efficient inference for Ne(t) is thus
relevant to estimate epidemiological parameters of great interest
in public health. Although this work is motivated by applications
in molecular epidemiology of infectious diseases, estimation of
Ne(t) is an active area of research with applications ranging
across many other scientific domains such as conservation biol-
ogy and population genetics (e.g., Shapiro et al. 2004; Huff et al.
2010; Lorenzen et al. 2011).

A common feature in these applications is that genetic data
are collected sequentially (heterochronous samples). In viral
studies, samples are collected and sequenced when infected
individuals attend clinics, hospitals, or testing centers. In
ancient DNA studies, specimens are dated according to the
time they lived, estimated through radiocarbon dating or
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other techniques. The coalescent typically models the gene
genealogy conditionally on sampling dates, that is, the sampling
dates are treated as censoring information (Felsenstein and
Rodrigo 1999). However, in some situations, it is reasonable
to assume that samples are collected at a higher frequency
when the population is large and at a lower frequency when the
population is small: for example, at the onset of an epidemic,
as the viral population grows and more people get infected,
more resources may be allocated to monitor the viral spread,
possibly leading to more molecular sequence collection. The
number of SARS-CoV-2 sequences uploaded daily in GISAID
offers some evidence of this claim (Shu and McCauley 2017)
(see the histogram in the supplementary material).

Karcher et al. (2016) study the scenario in which the sam-
pling process depends on the population size, and show that an
estimator of Ne(t) that does not account for this dependence
is biased. This issue was first discussed in the spatial statistics
literature by Diggle, Menezes and Su (2010), who term prefer-
ential sampling a situation in which the process that determines
the data locations and the process under study are dependent.
In this article, we will introduce a new model that accounts for
preferential sampling in a coalescent framework, while making
minimal assumptions on Ne(t), the sampling process, and their
dependence.

Three estimators that incorporate preferential sampling
into the coalescent framework have been proposed. Volz and
Frost (2014) propose an estimator in the case that Ne(t) grows
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exponentially and samples are collected as an inhomogeneous
Poisson process with rate linearly dependent on the effective
population size. Karcher et al. (2016) assumed that Ne(t)
is a continuous function, and the samples are collected
as an inhomogeneous Poisson process with rate λ(t) =
exp(β0)Ne(t)β1 , for β0, β1 ≥ 0, that is, the dependence between
the sampling process and the effective sample size is described
by a parametric model. Recent work by Parag, du Plessis, and
Pybus (2020) weakened this assumption substantially, allowing
for the dependence between the sampling process and effective
population size to vary over time. The key assumption in Parag,
du Plessis, and Pybus (2020) is that the sampling rate depends
linearly on Ne(t) within a given time interval, but the linear
coefficient changes across time intervals. The estimator of Parag,
du Plessis, and Pybus (2020), termed Epoch skyline plot (ESP),
is an extension of the classic skyline plot estimator for Ne(t)
(Pybus, Rambaut, and Harvey 2000), in which the sampling rate
and the effective population size are both piecewise-constant,
and the location and number of change points (boundary
points of the time intervals) are either specified or inferred.
As it is typical with skyline plots, the estimates are highly
variable, rough, and highly dependent on the specification of
change points locations and the number of piecewise-constant
pieces used. All three works show that under correct model
specification, accounting for preferential sampling leads to
a more accurate estimation of Ne(t) (in terms of absolute
deviations to the true trajectory), and narrower credible regions.

Other noncoalescent approaches for phylodynamics, such as
birth–death processes (Stadler 2010), explicitly incorporate the
sampling process by modeling the sampling dates as a partially
observed death process where only a fraction of the population
is observed. Stadler et al. (2013) extended previous work to
allow sampling rates to vary through time. Volz and Frost (2014)
show that in both, coalescent and birth-death processes alike,
statistical power largely depends on the correct specification
of the sampling process rate, rather than on the genealogical
model. Hence, the need for a flexible modeling approach of the
sampling process, adaptive to any possible scenarios encoun-
tered in applications.

There are a plethora of nonparametric estimators of Ne(t)
following the skyline plot (Pybus, Rambaut, and Harvey 2000).
Among others, the generalized skyline plot (Strimmer and
Pybus 2001) and the Bayesian skyline plot (Drummond et al.
2005) reduce the high variance and roughness that characterize
the skyline plot estimators. These methodologies require either
fixing or estimating change-points in Ne(t). A set of models
that do not employ change-points but arbitrary discrete grids
is based on Markov random fields (MRF): the Gaussian MRF
(GMRF) (Minin, Bloomquist and Suchard 2008; Palacios and
Minin 2012) allows for the recovery of smooth continuous
trajectories; the Horseshoe MRF (HSMRF) (Faulkner et al.
2020) is an alternative to GMRF which is locally adaptive, that
is, it can successfully recover sharp changes in a trajectory and
it is adaptive to a varying level of smoothness.

In this article, we borrow from this literature and introduce
an adaptive preferential sampling framework for phylodynam-
ics, where the adaptivity follows from the fact that the depen-
dence of the sampling process on Ne(t) changes over time. The
effective population size Ne(t) is modeled as a latent parameter

included in both, the coalescent and the sampling processes.
The latter is assumed to be an inhomogeneous Poisson process
with rate λ(t) = β(t)Ne(t), where β(t) is a continuous function
controlling the dependence on Ne(t), analogous to that intro-
duced by Parag, du Plessis, and Pybus (2020). We a priori model
Ne(t) and β(t) as two Markov random fields (MRF), with the
flexibility of using either a GMRF or a HSMRF. The prior choice
follows from the properties of the fields. The advantage of the
proposed adaptive preferential sampling over the ESP estimator
is that there is no need to specify (or estimate) the number and
location of the change points of β and Ne. Also, the resulting
estimates are smooth and the high variability that characterizes
skyline estimates disappears.

We develop the methodology assuming that a genealogy is
available to the researcher and develop algorithms for inference
under this framework. We test our model on simulated data and
compare it to alternative methods, including both, estimators
that account for preferential sampling and others that do
not. We implement our method in the R package adapref,
available at https://github.com/lorenzocapp/adapref , provide
two algorithms for posterior approximation: a Hamiltonian
MCMC and a Laplace approximation. We apply our method
to SARS-CoV-2 sequences from California and study whether
there is evidence of preferential sampling.

The rest of the article proceeds as follows. In Section 2, we
provide background on the coalescent process, the MRF priors
on Ne(t), and previous work on preferential sampling. In Section
3 we introduce the adaptive preferential sampling framework
and explain how to approximate the posterior distribution of
model parameters. Section 4 includes a simulation study, in
which we test our proposal through simulated data and compare
it to alternatives. In Section 5, we apply our method to two
datasets of SARS-CoV-2 sequences from Santa Clara and Los
Angeles counties in California. Section 6 concludes.

2. Background

2.1. Coalescent Model

Coalescent models are continuous-time Markov chains used
to model the set of ancestral relationships of a sample of n
individuals from a large population. This set of ancestral rela-
tionships is called gene genealogy. In the context of molecular
epidemiology, a genealogy is a subset of the transmission history
among the samples (Figure 1). Starting from the original work
of Kingman (1982a), several extensions to the standard coales-
cent have been developed to incorporate more realistic popu-
lation and sampling features, such as variable population size
(Slatkin and Hudson 1991), longitudinal sampling (also called
heterochronous sampling) (Felsenstein and Rodrigo 1999), and
population structure (Hudson 1990). Wakeley (2009) provided
a good introduction to the subject. Coalescent processes can
be characterized by two underlying processes: a jump chain
defining the ancestral relationships represented by a binary
tree topology and a pure death process that defines the tim-
ing of the coalescent events, that is, the times when pairs of
lineages meet their common ancestors. This sequence of hold-
ing times defines the branch lengths of the corresponding tree
topology.

https://github.com/lorenzocapp/adapref
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Figure 1. Example of a heterochronous genealogy. A genealogy of 7 individuals
sampled at 4 different times (color of tips) with multiplicities (n1 = 1, n2 = 2, n3 =
2, n4 = 2). Sampling times are denoted by (ts

k)1:4, coalescent times are denoted
by (tk)2:7 and Ii,j denoted the interval lengths delimited by coalescent times and/or
sampling times, that is, every time there is a change in the number of lineages.

Let the vector n = (n1, . . . , nm) denote the sample sizes at
times ts = (ts

1, . . . , ts
m), with m number of sampling points and

n the total sample size. The process goes backward in time (from
present toward the past): with ts

1 = 0 denoting the present time,
and ts

j > ts
j−1 for j = 2, . . . , m. Let t = (tn+1, . . . , t2) be the

vector of coalescent times with tn+1 = 0 < tn < · · · < t2.
Note that the subscript in tk is not the current number of extant
lineages (often a convention in the coalescent literature) but the
number of lineages that have yet to coalesce. Starting from t = 0,
the vectors t and ts partition time into intervals (Figure 1). An
interval ending with a coalescent event, say tk, is denoted by I0,k;
the intervals that end with a sampling time within the interval
(tk+1, tk) are denoted as Ii,k, where i ≥ 1 indexes all the sampling
events in (tk+1, tk). Formally, for every k ∈ {2, . . . , n}, we
define

I0,k = [max{tk+1, ts
j }, tk), where the maximum is taken over

all ts
j < tk,

and for every i ≥ 1 we set

Ii,k = [max{tk+1, ts
j−i}, ts

j−i+1) with the max taken
over all ts

j−i+1 > tk+1 and ts
j < tk.

With ni,k denoting the number of extant lineages during the
time interval Ii,k. Figure 1 plots an example of a heterochronous
genealogy with n = (1, 2, 2, 2), at times tt = (ts

1, . . . , , ts
4) with

ts
1 = 0. In the interval (t6, t5) there are two intervals: I1,5 =
[t6, ts

4), I0,5 = [ts
4, t5).

The vector of coalescent times t is a random vector whose
density with respect to the Lebesgue measure on R

n−1+ depends
on two quantities: the coalescent factor Ci,k := (ni,k

2
)
, and the

effective population size Ne(t). The coalescent density can be
factorized as the product of the conditional densities of tk−1
given tk, that is,

p(ts, n, Ne(t)) =
3∏

k=n+1
p(tk−1|tk, ts, n, Ne(t)) =

3∏
k=n+1

C0,k−1
Ne(tk−1)

exp

{
−

∫
I0,k−1

C0,k−1
Ne(t)

dt +
m∑

i=1

∫
Ii,k−1

Ci,k−1
Ne(t)

dt

}
, (1)

where the conditional density p(tk−1|tk, ts, n, Ne(t)) is the exten-
sion of Kingman n-coalescent holding time density to account
for variable effective population size and heterochronous sam-
ples (Felsenstein and Rodrigo 1999). The integral over Ii,k−1
accounts for the probability of no coalescence during Ii,k−1. It is
zero if there are less than i sampling times between tk and tk−1,
and tk appears in the definition of the intervals (either I0,k−1 or
I1,k−1 ). In addition, conditionally on ts, n, and tk, the coalescent
factors can be computed exactly and Ne(t) is the only unknown
parameter. Sampling times are assumed fixed.

Coalescent times can be alternatively viewed as the realiza-
tion of an inhomogeneous point process with rate C(t)Ne(t)−1,
with the coalescent factor C(t) being defined for all t ≥ 0 by
the notation above. This alternative view allows us to frame
the problem of inferring Ne(t) as that of inferring the inten-
sity function of an inhomogeneous point process. Palacios and
Minin (2013) is an example of how this representation is useful
in inference and simulations.

2.2. Some Priors for the Effective Population Size

Markov random field-based priors on the log effective popula-
tion trajectory allows the recovery of smooth trajectories. They
are computationally tractable thanks to the sparsity assumption
in the covariance matrix of the field (Rue and Held 2005).
All MRF-based priors for phylodynamic inference share the
assumption that the trajectory Ne(t) is an unknown continuous
function. The integral in Equation (1) is numerically approxi-
mated by the Riemann sum at a regular grid of M + 1 points
(ki)1:M+1, and one assumes that the trajectory Ne(t) is well
approximated by

∑M+1
i=1 exp θi1(t ∈ (ki, ki+1)), with θ =

(θi)1:M . We stress that neither the grid cell boundaries (ki)1:M+1
nor M depend on t and Ne(t), with the choice of M commonly
based on n (Faulkner et al. 2020). A description of the dis-
cretized coalescent log-likelihood L(θ |t) is given in detail in
Palacios and Minin (2012) and Faulkner et al. (2020).

The Horseshoe Markov random field prior (HSMRF) for
θ (Faulkner et al. 2020) assumes that the pth-order forward
differences of θ are independent and Horseshoe distributed
(Carvalho, Polson, and Scott 2010), that is,

�pθi|τi ∼ N(0, τ 2
i ) τi|γ ∼ C+(0, γ )

γ |ζ ∼ C+(0, ζ ) for p + 1 ≤ i ≤ M − 1, (2)

where C+(0, a) is the standard half-Cauchy distribution with
positive support with scale parameter a, τi are the local shrink-
age parameters and γ is the global smoothing parameter. To
completely specify the prior, one sets θ1 ∼ N(μ, σ 2

1 ), and for
p ≥ 2, the first p values of the field have running order q
difference priors as follows:

�qθq|aqτq ∼ N(0, aqτ
2
q ) τq|γ ∼ C+(0, γ )

γ |ζ ∼ C+(0, ζ ) for 1 ≤ q ≤ p − 1,
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with aq = 2−(p−q)/2. As it is common in the trend filtering
literature (Kim et al. 2009), only orders 1 and 2 are typically
employed in applications.

A related prior consists in assuming that the pth-order for-
ward difference of θ , more precisely the vector (θ1, �1θ1, . . . ,
�pθp, �pθM−1) is distributed as a GMRF

�pθi|γ ∼ N(0, γ 2) γ |ζ ∼ C+(0, ζ )

for p ≤ i ≤ M − 1, (3)

θ1 ∼ N(μ, σ 2
1 ), and for 1 ≤ q ≤ p − 1 we set �qθq|aqγ ∼

N(0, aqγ 2). That is, the vector (θ1, �1θ1, . . . , �pθp, �pθM−1)
is normally distributed with a covariance matrix that depends
on the order p considered. A common alternative to the half-
Cauchy distribution on γ is a Gamma prior, for example, as in
Palacios and Minin (2012). We will employ both formulations
in our implementations.

A fully nonparametric prior on log Ne(t) has been studied by
Palacios and Minin (2013), who proposed a Gaussian process
prior on the log effective population size. The advantage of
this approach is that no grid needs to be specified a priori. In
applications, we believe that the GMRF, the discretized version
of this prior, achieves a comparable empirical performance.

2.3. Preferential Sampling

Preferential sampling arises when the process that determines
the locations of the data (i.e., sampling process) and the pro-
cess under study are stochastically dependent. The notion was
introduced by Diggle, Menezes and Su (2010) who show that not
accounting for this effect leads to biased inference as a result
of the model misspecification. On the other hand, a correctly
specified sampling model can lead to more accurate estimates.

In phylodynamics, preferential sampling arises when the
sampling process depends on Ne(t). Volz and Frost (2014) pro-
vide the first evidence that coalescent-based inference under a
misspecified sampling process can be biased. They propose a
new estimator tailored to a coalescent process with exponen-
tially growing effective population size and a sampling process
with rate linearly dependent on Ne(t). They show that the esti-
mator obtained by correctly modeling the sampling process is
more accurate than the standard coalescent estimator.

Karcher et al. (2016) assumed that Ne(t) is a continuous
function and the sampling process is a Poisson process with
rate λ(t) = exp(β0)Ne(t)β1 , for β0, β1 ≥ 0, that is, the
rate λ(t) is proportional to the effective population size. This
model is parsimonious, capturing a variety of scenarios with two
parameters: with β1 = 1, the rate is a constant times Ne(t), on
the opposite side of the spectrum, with β1 = 0, one models
uniform sampling. Another advantage is that little assumptions
are made on Ne(t). However, the parametric assumptions on
λ(t) make the sampling dates strongly informative about Ne(t).
This situation can be problematic in the case of sampling dates
errors. Moreover, under no preferential sampling or under a
different rate λ(t) (model misspecified), it constitutes a relevant
model misspecification, and leads to estimation biases; see, for
example, Figure 3 in Section 4. Karcher et al. (2020) addressed
some of the limitations of the parametric model by including
time-varying covariates into the Poisson process rate: λ(t) =

exp(β0)Ne(t)β1 + β ′X(t), where X is a vector of covariates and
β ′ the corresponding linear coefficients. Here a covariate can be
for example a dummy variable indicating a change in sampling
protocols, or when a new sampling center joined the study. The
term β ′X adds more flexibility to the parametric dependence
enforced by exp(β0)Ne(t)β1 . Clearly, this extension requires the
availability of covariates informative on the sampling design.

Parag, du Plessis, and Pybus (2020) introduced the epoch
sampling skyline plot (ESP) estimator that allows for a more
flexible dependence of the sampling process on the effective
population size. More specifically, the ESP method assumes
that Ne(t) is a piecewise-constant function with r segments
described by the vector (N1, . . . , Nr) of r parameters, and time is
further partitioned in d epochs, such that in epoch i and segment
r the sampling process is a Poisson process with rate βiNj, where
(β1, . . . , βd) is a vector of d parameters. The vector (β1, . . . , βd)
modulates the dependence of the sampling process on the effec-
tive population size, assuming that the dependence changes
across d epochs. This is a notable advantage over the parametric
model of Karcher et al. (2016): one can model a variety of
realistic time-varying sampling protocols, or simply deal with
sampling discontinuities typical of outbreaks. We conjecture
that the higher flexibility in the ESP preferential model reduces
the risk of model misspecification and bias when the preferential
sampling assumption does not hold. Furthermore, the model
remains identifiable: the authors show that the expected Fisher
information matrix is nonsingular, a sufficient condition for
parameter identifiability in exponential families (Rothenberg
1971).

In the ESP, the endpoints of the r segments coincide with a
subset of the coalescent times t. Similarly, the boundary points
of the d epochs are determined by a subset of the sampling times.
The number of segments r and epochs d, as well as their lengths,
need to be determined or inferred. A downside of this approach
is that these choices affect the ESP estimates heavily. The authors
implement a frequentist and a Bayesian version with indepen-
dence assumptions in (N1, . . . , Np) and (β1, . . . , βd), leading to
estimates with high variance, a characteristic feature of skyline
plot-type estimators.

3. Adaptive Preferential Sampling

In the adaptive preferential sampling framework, the sampling
times are determined by the jumps of an inhomogenous Poisson
process with rate λ(t) = β(t)Ne(t), with Ne(t) effective popula-
tion size, and β(t), a function modulating the linear dependence
between λ(t) and Ne(t). Let si denote the ith sampling time
generated by this process, for i = 1, . . . , n and s1 fixed to 0. The
notation (si)1:n is added to highlight the difference between a
realization from the Poisson simple point process (si)1:n of one
event at a time, and the observed vector ts introduced in Section
2 in which multiple events can be observed at a given time point.
As we will show later in this section, this discrepancy is resolved
by discretizing the observed time window into regular intervals.
We assume that both β(t) and Ne(t) are unknown continuous
functions. To numerically approximate the integrals in (1), we
resort to the approximation sketched in in Section 2.2 and
detailed in Palacios and Minin (2012). We employ the regular
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grid (ki)1:M+1 and assume that Ne(t) is governed by parameters
θ = (θi)1:M′ . Similarly, to model the time-varying rate λ(t),
we assume that β(t) is governed by parameters α = (αi)1:M′ ,
where M′ = mini{ki+1 : ki+1 > sn} and β(t) ≈ exp αi for
t ∈ (ki, ki+1].

By the independence of nonoverlapping intervals of the Pois-
son process, we can write the log-likelihood contribution of the
sampling process as

L(α, θ |s) =
M′∑
i=1

[∣∣∣{si : si ∈ (ki, ki+1]}
∣∣∣(αi + θi + log �i)− exp{αi θi}�i

]
, (4)

where �i = ki+1 − ki and the first interval [k1, k2] is
closed to include s1. Equation (4) is the log-likelihood of
M′ independent Poisson distributed random variables with
rates (exp{αi θi}�i)1:M′ and number of events

(∣∣∣{si : si ∈
(ki, ki+1]}

∣∣∣)
1:M′ .

A few preliminary remarks. M′ is not related to the number
of epochs d in ESP: it is solely determined by sn and the grid
(ki)1:M+1, which in turn does not depend on t. We have by
definition M′ < M to ensure that β(t) is not modeled after
the last sampling time (there is no information in the sample to
estimate it). In addition, through the term |{si : si ∈ (ki, ki+1]}|,
the discretized log-likelihood (4) allows to naturally account
for multiple sampling times collected at once, reconciling this
model with the description of the heterochronous coalescent
given in Section 2.1. Lastly, the identifiability of the model
follows by the result in Parag, du Plessis, and Pybus (2020) since
our likelihood and the ESP likelihood only differ by the loca-
tions of the breakpoints. Intuitively, while the two parameters
would not be identifiable from the sampling process alone, the
parameter Ne(t) appears in both the coalescent and the sampling
likelihoods, making the joint model parameters Ne(t) and β(t)
identifiable.

Here, we model both α and θ through Markov random
field priors, either HSMRFs or GMRFs. This allows us to make
minimal assumptions on Ne(t) and β(t): the choice of the grid
practically depends solely on the sample size and no major
assumptions are made on the underlying sampling process.
The choice of prior for Ne(t) follows from the well-studied
characteristics of the two priors discussed in Section 2.2. Under
the HSMRF prior on β(t), one can model situations in which
there are sharp changes in the sampling design (both first and
second orders). Under the GMRF prior on β(t), one favors
smooth sampling designs, a situation which is also desirable
when one does not have exact knowledge of the underlying
sampling protocol. Note that the choice of field and order of the
priors can be disjoint: for example, one can place a HSMRF of
order 1 prior on Ne(t) and a GMRF of order 2 prior on β(t). We
study in details the properties of the prior distributions in the
supplementary material.

To formalize, Bayesian phylodynamic inference under adap-
tive preferential sampling can be written in the most general
form as

t|θ , n, s ∼ Coalescent model s|θ , α, n ∼ Poisson process
θ |τ , γ ∼ HSMRF-p1 or θ |γ ∼ GMRF-p1

α|ψ , ξ ∼ HSMRF-p2 or α|ξ ∼ GMRF-p2, (5)

where ξ is the global smoothing parameter of the MRF on α, ψ is
the vector of local shrinkage parameter of the HSMRF prior on
α, p1, and p2 are the orders of the respective MRFs. We will refer
to any combination of priors above as the adaptive preferential
model.

Note that the adaptive preferential model differs notably
from the framework of the ESP estimator by the fact that the
parameter vectors θ and α are each dependent, the grid at which
they are defined does not depend on t, and these priors favor
smooth estimates.

3.1. Inference

Posterior distributions. Under the assumption that t and s are
known, and that we place HSMRF priors on both α and θ ,
the posterior distribution of model parameters could be readily
computed

π(α, θ , ψ , τ , γ , ξ |t, s) ∝ L(α, θ |s)L(θ |t)π(θ |τ )π(τ |γ )

π (γ |ζ1)π(α|ψ)π(ψ |ξ)π(ξ |ζ2),

where L(θ |t) is the discretized coalescent log-likelihood. Under
GMRF priors on α and θ , the posterior would be

π(α, θ , γ , ξ |t, s) ∝ L(α, θ |s)L(θ |t)π(θ |γ )

π (γ |ζ1)π(α|ξ)π(ξ |ζ2).

For our analysis, we fixed the pair (g, t), which can be estimated
by other methods such as the Maximum clade credibility tree of
the posterior distribution of the genealogy. In order to approx-
imate the posterior distribution we use two methods: Hamil-
tonian MCMC and Integrated Nested Laplace approximation
(INLA; Rue, Martino, and Chopin 2009). The choice of the two
algorithms is based on the recent results in the phylodynamics
literature: Lan et al. (2015) and Faulkner (2020) study the use
of HMC in the context of phylodynamics with GP, GMRF,
and HSMRF priors on Ne(t); Palacios and Minin (2012) and
Karcher et al. (2016) study INLA with a GMRF-1 prior on Ne(t).
Both INLA and HMC are shown to accurately approximate the
posterior distributions and to efficiently handle large sample
sizes (in the order of thousands of samples).

For Hamiltonian MCMC, we rely on Stan (Carpenter et al.
2017). The hyperparameters ζ1 and ζ2 are as described in
Faulkner et al. (2020, app. B ) (their method is suitably adapted
to ζ2, the global smoothing parameter of the MRF on α).

INLA approximation. Posterior inference from latent Gaussian
models can be achieved by approximating posterior marginal
distributions via Laplace approximations. INLA allows us
to replace MCMC entirely and approximate the posterior
marginals of model parameters when our model is based on
GMRF priors. What follows is largely based on Palacios and
Minin (2012), who discuss INLA for GMRFs in phylodynamics.
We extend it here to include the adaptive preferential sampling
priors.

INLA approximates posterior marginals π(γ , ξ |t, s),
π(θi|t, s) for 1 ≤ i ≤ M, and π(αj|t, s) for 1 ≤ j ≤ M′.
The posterior marginal distribution of hyperparameters is

π̂(γ , ξ |t, s) ∝ π(γ , ξ , θ , α, t, s)
π̂G(θ , α|γ , ξ , t, s)

∣∣∣∣
α=α∗(ξ ,γ ),θ=θ∗(ξ ,γ )

,
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where π̂G(θ , α|γ , ξ , t, s) is the Gaussian approximation of
π(θ , α|γ , ξ , t, s) obtained from a Taylor expansion around its
modes θ∗(ξ , γ ) and α∗(ξ , γ ) (modes can be computed through
any optimization algorithm, e.g., Newton–Raphson).

The approximation of the marginal distributions of the MRFs
π(θi|t, s) and π(αj|t, s) are

π̂(θi|γ , ξ , t, s) ∝ π(γ , ξ , θ , α, t, s)
π̂GG(θ−i, α|γ , ξ , t, s)

∣∣∣∣
α=α∗,θ−i=θ−i

∗
and

π̂(αi|γ , ξ , t, s) ∝ π(γ , ξ , θ , α, t, s)
π̂GG(θ , α−i|γ , ξ , t, s)

∣∣∣∣
α−i=α∗−i,θ=θ∗

,

where π̂GG(θ , α−i|γ , ξ , t, s) is the Gaussian approximation
of π(θ , α−i|γ , ξ , t, s) obtained from a Taylor expansion at
(α−i, θ) = EG[θ , α−i|γ , ξ , t, s], where EG denotes the expected
value w.r.t. π̂G(θ , α|γ , ξ , t, s). Analogously, we can define the
same term for π̂GG(θ−i, α|γ , ξ , t, s). Given π̂(θi|γ , ξ , t, s) and
π̂(αi|γ , ξ , t, s), we use π̂(γ , ξ |t, s) to integrate out γ and ξ and
obtained the desired distributions.

4. Simulations

We rely on simulations to evaluate the performance of the
adaptive preferential sampling (adaPref) method in estimating
the effective population size trajectory. We compare the per-
formance of adaPref to alternative methods with and without
preferential sampling. This simulation study is designed to test
the benefit of the adaptive framework. We consider two set-
tings: “strong” preferential sampling (sampling process always
depends on Ne(t)), and “weak” preferential sampling (sampling
is preferential only during some time periods.

For parsimony, we address the following questions in the
supplementary material: (i) we evaluate the sensitivity of adaPref
posterior distributions to the choice of the MRF (GMRF vs
HSMRF) priors and their orders (1 vs 2), (ii) we study the
approximation error incurred using INLA in place of MCMC,
(iii) we study how well our model infer β(t).
Simulation setup. In order to exhibit the benefit of the adaPref
framework, we consider adaPref with GMRF order 1 priors
(GMRF1) on both Ne(t) and β(t) and posterior distributions
approximated by INLA. We compare adaPref with the preferen-
tial sampling method of Karcher et al. (2016) (parPref) and the
method without preferential sampling of (Palacios and Minin
2012) (noPref), available in the R package phylodyn (Karcher
et al. 2017). Both noPref and parPref rely on a GMRF1 prior on
Ne(t) and the INLA approximation. All implementations rely on
R-INLA (Rue, Martino, and Chopin 2009).

For each dataset, we test the performance of all models
through a set of commonly used summary statistics. For a
regular grid of time points (vi)1:K , as a measure of bias we
consider the sum of relative errors: DEV = ∑K

i=1
|N̂e(vi)−Ne(vi)|

Ne(vi)
,

where N̂e(vi) is the posterior median of Ne at time vi; to quantify
the uncertainty in the estimate we use the mean relative width:
RWD = 1

K
∑K

i=1
|N̂97.5(vi)−N̂2.5(vi)|

Ne(vi)
, where N̂97.5(vi) and N̂2.5(vi)

are, respectively, the 97.5% and 2.5% quantiles of the poste-
rior distribution of Ne(vi); last, the envelope measure ENV =
1
K

∑K
i=1 1{N̂2.5(vi)≤Ne(vi)≤N̂97.5(vi)}, which measures the propor-

tion of the curve that is covered by the 95% credible region,

that is, it is a proxy for coverage. We fix K = 100, v1 = 0 and
vK = .8 t2.

Data. We simulate genealogies under two population size tra-
jectories: a piece-wise constant and exponential trajectory (CE),
and a bottleneck trajectory (B). For the sampling protocols, we
simulate sampling trajectories that resemble situations encoun-
tered in applications: a sampling protocol proportional to Ne(t)
(PP), uniform (U), a “lagged” response to changes in Ne(t)
(LP), and a situation where only some segments of the sampling
trajectory are preferential (UP). The combination of the two
acronyms will be used in the plots, for example, B-U refers to
bottleneck trajectory and uniform sampling. The first rows of
Figures 2-3 depict the Ne (red) and λ(t) (black) trajectories (up
to a scaling constant and in log-scale) of the eight simulation
scenarios considered. Exact specifics of the trajectories used are
given in the supplementary material.

We consider three sample sizes (n = 100, n = 300, and n =
500) and 50 simulations for each combination of trajectories
and sample size. For a fixed n, β(t), and Ne(t), we set n1 = 2,
and simulate n − n1 sampling locations from a Poisson process
with rate β(t)Ne(t). This defines a vector of sampling times and
n = (2, 1, . . . , 1). Conditionally on n, s, and Ne(t), we sample
coalescent times t according to Palacios and Minin (2013, algor.
3). Both inhomogeneous Poisson processes are sampled using
the Lewis-Shedler thinning algorithm (Lewis and Shedler 1979).
Note that there is no need to sample tree topologies because the
vector t is a sufficient statistic for Ne(t). Last, we approximate
the posterior distribution of Ne(t) conditionally on t, s, and n for
the three methods; and the posterior of β(t) conditionally on s
and n (only adaPref). The code for reproducing the simulation
study is available at https://github.com/lorenzocapp/adapref as a
R package.

Results. We first do a qualitative assessment of the three models
considering a single simulated dataset from each simulation
scenario (case n = 500). The four panels of Figure 2 second
row depict the posterior medians and 95% credible regions of
Ne(t) for the constant-exponential trajectory (CE). Our adaPref
results are depicted in black and gray scale, the parPref method
in red, and the noPref in blue. Each column corresponds to
a sampling protocol. All posterior medians of Ne(t) are very
similar and close to the truth (black dashed line in the same
panel, red line in the panel above) except for parPref (red) in
the last two scenarios. Indeed, the last two scenarios correspond
to the cases in which the preferential sampling assumption of
parPref is violated. ParPref and adaPref show similar credible
region widths in the case of proportional preferential sampling
(first column), however, adaPref consistently shows narrower
credible regions across sampling protocols. Figure 3 shows the
same type of comparisons for the bottleneck trajectory (B). The
posterior median and credible intervals obtained with parPref
are particularly off during the periods of no preferential sam-
pling in the last simulation scenario (fourth column). In all
other sampling scenarios, all methods have very similar poste-
rior medians, however again, adaPref shows narrower credible
regions while keeping high coverage across sampling protocols.

We now turn to the quantitative comparison of the accuracy
of the Ne(t) estimators obtained with the three different mod-
els: adaPref, noPref, and parPref considering the 1200 datasets

https://github.com/lorenzocapp/adapref
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Figure 2. Simulations from constant-exponential trajectories and posterior inferences of Ne(t). First row panels depict the simulated log-effective population size (red)
and log-sampling intensity (black) trajectories (up to a constant). Second row panels depict posterior estimates for the four simulation scenarios from a single simulated
genealogy picked at random with n = 500 tips. All models used GMRF of order 1 priors and posterior inference is approximated with INLA. The posterior medians of adaPref
are depicted as solid black curves and the 95% Bayesian credible regions are depicted as shaded areas. Posterior medians of parPref and noPref are depicted, respectively,
as solid blue and red curves, and the 95% Bayesian credible regions are depicted by the corresponding dashed curves. n and s are depicted by the heat maps at the bottom
of the last four panels: the squares along the time axis depict the sampling times, while the intensity of the black color depicts the number of samples. The true trajectories
are depicted as a black dashed curves.

Figure 3. Simulations from bottleneck trajectories and posterior inferences of Ne(t). First row panels depict the simulated log-effective population size (red) and log-
sampling intensity (black) trajectories (up to a constant). Second row panels depict posterior estimates for the four simulation scenarios and from a single simulated
genealogy picked at random with n = 500 tips. All models used GMRF of order 1 priors and posterior inference is approximated with INLA. The posterior medians of
adaPref are depicted as solid black curves and the 95% Bayesian credible regions are depicted by shaded areas. Posterior medians of parPref and noPref are depicted
respectively as solid blue and red curves, and the 95% Bayesian credible regions are depicted by the corresponding dashed curves. n and s are depicted by the heat maps
at the bottom of the last four panels: the squares along the time axis depict the sampling times, while the intensity of the black color depicts the number of samples. The
true trajectories are depicted as a black dashed curves.

sampled. We use the three metrics described above: ENV as
a measure of coverage, RWD as a measure of credible region
width, and DEV as a measure of bias. Table 1 reports the average
values of the three metrics relative to the value obtained by the
adaPref method (grouped by sample size, model, and simulation
scenario). A value higher than one means a better performance
in terms of ENV, and a worst performance in terms of RWD
and DEV. Figure 4 top two rows plot the ENV, RWD, and DEV
summary statistics obtained from the CE (first row) and the B
(second row) trajectories. In the top two rows, we are not group-

ing anymore by sample size: a boxplot includes the datasets
of all the three sample sizes. Figure 4 last row panels depict
the boxplots of the three statistics considered, now grouping
simulations by sample size (now, a boxplot includes the datasets
of all simulation scenarios).

Table 1 suggests that adaPref has generally a better perfor-
mance in terms of DEV and RWD. The adaPref model (red
boxplots) has the best mean performance in six out of the
eight scenarios in terms of both RWD and DEV (B-PP, B-U,
all CE scenarios). In the last two scenarios (B-LP, B-UP), the
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Table 1. Simulation: Summary statistics of adaPref posterior inference of Ne(t) grouped by simulation study and sample size.

n = 100 n = 300 n = 500

model method ENV∗ DEV∗ RWD∗ ENV∗ DEV∗ RWD∗ ENV∗ DEV∗ RWD∗

B-LP adaPref 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
noPref 1.09 1.08 2.02 1.05 1.21 3.02 1.04 1.08 1.33
parPref 1.08 1.04 1.85 1.05 1.19 2.92 1.04 1.07 1.30

B-PP adaPref 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
noPref 1.01 1.26 1.77 1.00 1.20 1.92 1.00 1.10 1.20
parPref 1.00 1.04 1.10 0.99 1.04 1.15 0.99 0.99 0.92

B-U adaPref 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
noPref 1.06 1.18 2.36 1.04 1.12 1.49 1.03 1.19 1.68
parPref 1.06 1.15 2.28 1.04 1.11 1.47 1.03 1.19 1.67

B-UP adaPref 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
noPref 1.04 1.31 3.41 1.05 1.13 1.92 1.04 1.07 1.45
parPref 1.03 1.27 2.74 0.80 1.32 0.86 0.76 1.40 0.76

CE-LP adaPref 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
noPref 1.01 0.99 1.49 1.01 1.00 1.11 1.01 0.99 1.10
parPref 0.90 1.11 0.66 0.84 1.33 0.86 0.59 2.33 1.02

CE-PP adaPref 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
noPref 1.00 1.11 1.36 1.00 1.15 1.36 1.00 1.19 1.27
parPref 1.00 1.07 1.16 1.00 1.00 0.99 1.00 1.00 0.99

CE-U adaPref 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
noPref 1.01 1.20 1.70 1.01 1.12 1.22 1.00 1.12 1.23
parPref 1.01 1.15 1.56 1.01 1.11 1.21 1.00 1.12 1.22

CE-UP adaPref 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
noPref 1.01 0.97 1.10 1.01 0.99 1.07 1.01 0.98 1.07
parPref 0.98 1.01 0.90 0.87 1.25 0.89 0.74 1.60 0.87

NOTES: The bar on top of the criterion means we are considering the average value across the 50 estimated statistics for each simulation trajectory based on Ne(t) posterior,
rel refers that the value is relative to the result of adaPref. adaPref (our method), parPref (Karcher et al. 2016), and noPref (Palacios and Minin 2012). A value higher than
one means a better performance in terms of ENV, and a worst performance in terms of RWD and DEV.

Figure 4. Summary statistics of parPref, noPref and adaPref inference of Ne(t) approximated with INLA. In the first two rows, each box refers to one method (color in the
legend) and depicts the distribution of the 150 estimated statistics for each simulation trajectory (50 datasets for each sample size, 150 in total) based on Ne(t)posterior: ENV,
first column; RWD, second column; DEV, third column. In the third row, the grouping is done according to the sample size: each box is based on 400 simulated genealogies
(50 genealogies for each of the eight trajectories). In the legend, INLA_adaPref is our method, INLA_noPref is the method in Palacios and Minin (2012), INLA_parPref is the
method of Karcher et al. (2016). All models used GMRF of order 1 priors.

parPref model achieved the lowest mean RWD and noPref the
lowest mean DEV. Surprisingly, the adaPref model outperforms
parPref also in the CE-PP and B-PP scenarios, where the para-
metric assumptions are met. noPref is the model that has a
slightly better performance in terms of coverage (ENV). How-
ever, this is achieved with much wider credible regions. We see
how the adaPref coverage is never too different from the noPref
ones, while the credible regions are substantially narrower. We
judge this as a better performance given that one can always
achieve perfect coverage with very wide credible intervals.

The adaPref model is more heavily parameterized and one
may be led to think that the performance of the adaPref estima-

tor is affected by the sample size. However, there is no detectable
sample size effect: the relative performance of the estimators
is roughly similar as n increases. The adaPref estimator is the
best performing according to DEV and RWD averaging over all
the simulation scenarios jointly. See Table 1 and the last row of
Figure 4.

5. SARS-CoV-2 in Los Angeles and Santa Clara
counties

SARS-CoV-2 is the virus responsible for the coronavirus
disease pandemic in 2019–2020. Molecular surveillance of
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Figure 5. Phylodynamic inference with noPref, parPref and adaPref models from SARS-CoV-2 genealogies inferred from GISAID data obtained from Los Angeles and Santa
Clara counties. First two rows panels depict Ne(t) posterior distributions inferred using three possible priors: the noPref (Palacios and Minin 2012), the parPref Karcher
et al. (2016), and our adaPref prior. The last row first and third panels depict how many samples are collected each day. The second and fourth panels depict β(t) posterior
distribution (only under the adaPref prior). The posterior medians are depicted as solid black lines and the 95% Bayesian credible regions are depicted by shaded areas.
Sampling times are also depicted by the heat maps at the bottom of the top two rows panels: the squares along the time axis depicts the sampling time, while the intensity
of the black color depicts the number of samples.

SARS-CoV-2 complements traditional surveillance methods
based on case count data and provides a unique opportunity
to retrospectively learn past disease dynamics. Researchers
and public health officials agree that a successful response
to an outbreak involves the prompt collection, sequencing,
and sharing of molecular samples (Gire et al. 2014; Polonsky
et al. 2019; WHO 2021). The benefit of a rapid response has
been evident in the COVID-19 pandemic; for example, in the
Netherlands (Munnink et al. 2020) and in the UK (Meredith
et al. 2020). However, the number of sequences collected and
shared varied substantially country by country, as can be seen
in the GISAID EpiCov database (Shu and McCauley 2017). In
addition to a timely response, deciding when, where and how
many sequences should be sampled has been receiving attention
(Parag and Pybus 2019). The heterogeneity in sampling designs
and speed of implementations of genomic surveillance has
motivated our work. In this section, we provide a case study
to highlight the usefulness of our procedure.

Here, we use the adaPref model for estimating the viral
genetic diversity trajectory Ne(t), from currently available viral
molecular sequences in GISAID obtained from infected indi-
viduals. We analyzed viral whole-genome sequences collected
in California in Santa Clara (S.C.) and Los Angeles (L.A.) coun-
ties. The GISAID reference numbers of the sequences included
in this study, together with data access acknowledgments, are
included in the supplementary material.

We downloaded all molecular sequences available on June
27, 2020. The datasets consist of 195 and 134 sequences from
S.C and L.A. counties, respectively, with collection dates ranging
from mid-February, 2020 to April 13 of 2020. We included
only high coverage sequences with more than 25,000 base pairs.
Sampling frequency information is depicted in the first and third
panels of the last row of Figure 5. We note that the sampling
effort varied in the two counties: most of the L.A. samples are
concentrated in late March-mid April, while samples have been
collected throughout late February-mid April in S.C. county.
We consider this case study interesting because the two coun-
ties exhibit a different response to the outbreak: S.C. public
health officials and researchers promptly responded collecting
sequences, while in L.A. country most sequences were collected
at the peak of the first outbreak.

The two estimated genealogies employed in the analysis are
the maximum clade credibility trees of the posterior distri-
butions obtained with BEAST2 (Bouckaert et al. 2019). The
MCMC parameters are 20 × 106 iterations, thinning every 1000
and burnin of 10 × 106 iterations. We selected the following
priors: Extended Bayesian Skyline prior on Ne(t) (Heled and
Drummond 2008), HKY mutation model with empirically esti-
mated base frequencies (Hasegawa, Kishino and Yano 1985),
and uniform prior on the mutation rate with support con-
strained between 9 × 10−4 and 1.1 × 10−3 substitutions per site
per year. The support of the uniform prior was centered around
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1 × 10−3 mutations per site per year, an estimate obtained
by regressing the Hamming distances of the sequences to the
ancestral reference sequence (GenBank MN908947; Wu et al.
2020) on the time difference between the sampling times and
the reference sampling time.

Given the two estimated genealogies, we approximate poste-
rior marginal distributions of Ne(t) through the INLA approx-
imations of the noPref model (Palacios and Minin 2012), the
parPref model (Karcher et al. 2016), and our adaPref model.
In the first two rows of Figure 5, we show the estimates of
effective population size trajectories with the noPref model (first
column), the parPref model (second column), and the adaPref
model (third column). Results for S.C. county correspond to
the first row and for L.A. county to the second row. Sampling
intensity posteriors (computed only through the adaPref model)
are given in the third row of Figure 5 in the second and third
panels.

The median posteriors of Ne(t) obtained with the noPref
and the adaPref models in L.A. county have almost identical
trajectories, while the one with the parPref model has a more
pronounced maximum later on (around April 1). In the S.C.
county dataset, the median posterior estimates of Ne(t) obtained
with the parPref and adaPref models are in this case almost
identical, with the estimate obtained with noPref not recovering
a steep growth at the end of March. The split behavior of the
adaPref posterior, once matching with the noPref posterior and
once with parPref posterior, can be explained by looking at the
posterior of β(t): in the S.C. dataset, β(t) median posterior
is practically flat, a situation consistent with the parametric
assumption of the parPref model, while the time-varying β(t)
accounts for the fact that sampling in L.A. is concentrated in a
short time frame.

The average width of the credible regions (RW = 1
K∑K

i=1 |N̂97.5(vi) − N̂2.5(vi)|) differ across methods and datasets.
In S.C. county, RWD is 8.5 for noPref, 6.6 for parPref, and 4.7
for adaPref inferences. In L.A. county, the RWD is 23.9 for
noPref, 13.6 for parPref , and 20.8 for adaPref inferences. We
get a general confirmation that preferential sampling estimators
lead to narrower credible regions.

We consider the “split performance” of adaPref (in S.C. simi-
lar to parPref and in L.A. similar to noPref) a positive feature of
our model. The timely response to the outbreak in S.C. county
was followed by a sampling collection that spanned the early
stages of the pandemic. Here, adaPref detects an association
between the sampling and the coalescent processes. In L.A.
county, there is one sequence collected on January 23rd, no
sequences collected for about 2 months, followed by an intense
sampling effort. The preferential sampling assumption “forces
Ne(t) down” in February and early March because there are no
samples. This is evident in the result of parPref. On the other
hand, adaPref does not detect a strong association between the
two processes; hence, the estimates are closer to noPref. To
understand which model is correct in this setting, we would
need to have access to the sampling protocols of L.A. county to
know why there are no samples in those two months.

A final remark. The estimates of Ne(t) presented here
are representative of genetic diversity over time and do not
directly translate to the number of infections. The coalescent

we employed ignores recombination, population structure, and
selection. Also, we note that observed nucleotide substitutions
may be caused by sequencing errors and these are being ignored
in our study.

6. Discussion

We have introduced an adaptive preferential sampling model
to estimate the effective population size Ne(t) of a coalescent
process accounting for a situation in which sampling dates are
stochastically dependent on the effective population size. We
model sampling dates as an inhomogeneous Poisson process
with rate β(t)Ne(t), where β(t) is a time-varying coefficient that
modulates how this dependence varies over time. We assume
that both Ne(t) and β(t) are continuous functions and model
them in a Bayesian framework with Markov random field priors.
This methodology allows us to account for preferential sampling
while making minimal assumptions on the dependence between
the sampling process and the genealogical process. We term the
model proposed adaptive preferential sampling.

The adaptive preferential sampling model allows for a situ-
ation in which the sampling protocol changes over time but no
detailed knowledge on the way samples are collected is available.
In particular, the local adaptivity of the Horseshoe Markov
random field prior allows also to model abrupt changes in the
sampling protocol.

We show through simulation studies that the estimates
obtained through the adaptive preferential sampling are more
accurate than some of the available alternatives, leading to
smaller absolute deviations from the true trajectories and
narrower credible regions. The performance is competitive also
in a broad set of scenarios in which the parametric assumptions
of the alternative methods are met. We provide an application to
SARS-CoV-2 monitoring and show the “adaptive nature” of our
methodology: in one scenario the estimate was comparable to
that of the model without preferential sampling. In a second one,
the estimate was matched that of the parametric preferential
sampling methodology.

The most direct extension for future work is to include
genealogical uncertainty, which is being ignored in the present
work. While Kingman heterochronous n-coalescent is the
standard coalescent model choice to include genealogical uncer-
tainty, recent works have proposed to infer Ne(t) employing
lower resolution coalescent models (Sainudiin, Stadler, and
Véber 2015; Cappello, Veber, and Palacios 2020). Our adaptive
preferential sampling framework can be paired with any of the
ancestral processes.

Another natural extension to the proposed adaptive pref-
erential framework is to incorporate covariates into λ(t), the
sampling rate, as it is done in Karcher et al. (2020), to include
auxiliary information about the sampling protocols available to
the modeler. For example, it is easy to imagine that one may have
direct control over the sampling protocol. The resulting rate of
the sampling process would be λ(t) = β(t)Ne(t) + β ′X(t),
where X is a vector of covariates and β ′ the corresponding linear
coefficients.

In this article, we model jointly the coalescent process and a
sampling process depending on Ne(t). An interesting direction
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of future work is to model jointly the coalescent process with
other processes that depend on Ne(t), such as the total num-
ber of infected individuals in an epidemic (Volz et al. 2009).
The adaptive framework introduced in this article seems to
be suitable to such an extension, given that we make limited
assumptions on the dependence between the two processes.
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