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a b s t r a c t

Recovery of population size history from molecular sequence data is an important problem in popula-
tion genetics. Inference commonly relies on a coalescent model linking the population size history to
genealogies. The high computational cost of estimating parameters from these models usually compels
researchers to select a subset of the available data or to rely on insufficient summary statistics for
statistical inference. We consider the problem of recovering the true population size history from two
possible alternatives on the basis of coalescent time data previously considered by Kim et al. (2015). We
improve upon previous results by giving exact expressions for the probability of correctly distinguishing
between the two hypotheses as a function of the separation between the alternative size histories, the
number of individuals, loci, and the sampling times. In more complicated settings we estimate the exact
probability of correct recovery byMonte Carlo simulation. Our results give considerably more pessimistic
inferential limits than those previously reported. We also extended our analyses to pairwise SMC and
SMC’ models of recombination. This work is relevant for optimal design when the inference goal is
to test scientific hypotheses about population size trajectories in coalescent models with and without
recombination.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Estimation of historical effective population size trajectories
from genetic data provides insight into how genetic diversity
evolves over time. Availability of molecular sequence data from
different organisms living today and from ancient DNA samples
together with the development of evolutionary probabilistic mod-
els (Wakeley, 2008), has enabled reconstruction of effective popu-
lation size trajectories of human populations over the past 300,000
years (Gattepaille et al., 2016; Palacios et al., 2015), Ebola virus over
the course of the 2014 epidemic in Sierra Leone (Tong et al., 2015)
and Egyptian hepatitis C virus for over 100 years (Iles et al., 2014).

Until recently, inference of effective population size trajecto-
ries was limited by scarcity of molecular sequence data such as
single nucleotide polymorphisms (SNPs) and microsatellites. The
increase in the total amount of genetic data obtained at different
time points from a large number of individuals over large genomic
segments (loci), and the development of more realistic proba-
bilistic models, has led to a situation in which computationally
tractable statistical inference is only available from insufficient
summary statistics such as the site frequency spectrum (SFS) (Sain-
udiin et al., 2011), from small numbers of samples, or from short
genomic regions (Drummond et al., 2012; Griffiths and Tavaré,

∗ Corresponding author.
E-mail addresses: johndrow@stanford.edu (J.E. Johndrow),

juliapr@stanford.edu (J.A. Palacios).

1994; Kuhner et al., 1995; Li and Durbin, 2011; Stephens and
Donnelly, 2000). Gao and Keinan (2016) give an extensive list of
methods.

Accurate detection of change points in the effective popula-
tion size trajectory is of scientific relevance in many applications
such as the timing and length of the human expansion out-of-
Africa (Gao and Keinan, 2016), and extinctions of large mammals
at the end of the Pleistocene epoch often attributed to the depre-
dations of humans (Shapiro et al., 2004). Rather than studying
the statistical properties of different estimators, we build upon
previouswork byKimet al. (2015) and consider how increasing the
amount of genetic data increases our ability to distinguish between
two alternative hypotheses about population history under differ-
ent evolutionary models. We evaluate the ability to detect change
points by asking what the lowest achievable error rate is for classi-
fication between alternative hypotheses about population history
with different change points — the Bayes error rate. Calculation
of Bayes error rates allows us to answer such questions without
considering a particular estimator. We give analytic expressions,
and inmore complicated settings numerical approximations, of the
exact probability that the optimal procedure can identify the truth,
given coalescence data. This is a significant difference between the
current work and Kim et al. (2015), which emphasized the use of
inequalities that, as we show in extensive comparisons, typically
give quite optimistic results on the limits of inference in coalescent
models. We study the effect of adding more sequences and more
loci under the coalescent model with independent loci. We also
study the effect of adding more loci in models with recombination
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for pairwise coalescent data under different demographic scenar-
ios. We also consider the more realistic scenario where the coales-
cence times are observed with noise, as would result when they
are estimated from sequence data, and show how the probability
of correct classification is affected by the presence of noise.

2. Coalescent evolutionary models

The standard n-coalescent (Kingman, 1982) is a generative
model of molecular sequence of n individuals sampled at ran-
dom from a population of interest. In the single-locus neutral
model, observed variation is the result of a stochastic process
of mutations along the branches of the sample’s genealogy; the
genealogy is a timed bifurcating tree (Fig. 1A) that represents
the ancestral relationships among samples. When moving back in
time, two individuals find a common ancestor (coalesce) in the
past with rate inversely proportional to the effective population
size N(t). Initially, the standard (homogeneous) n-coalescent as-
sumed constant population size N(t) = N and that sequences
were sampled at the same time (t=0). Assuming a global muta-
tion rate µ, the parameter of interest is θ = 2Nµ. The stan-
dard neutral coalescent has been extended to variable population
size N(t) (Slatkin and Hudson, 1991), varying sampling times
(heterochronous coalescent (Felsenstein and Rodrigo, 1999)), and
to account for population structure (Beerli and Felsenstein, 2001)
and recombination (Griffiths and Marjoram, 1997).

Formally, the coalescent with variable effective population size
N(t) (Slatkin and Hudson, 1991) is an inhomogeneous Markov
point process of n − 1 coalescent times denoted by xn−1, . . . , x1.
The process starts with n individuals (lineages) at fixed time xn =

0 until xn−1 when two of the n lineages meet their most recent
common ancestor. The process continues merging (coalescing)
pairs of lineages until time x1 when the remaining two lineages
reach a common ancestor. The resulting realization is a genealogy
with n − 1 coalescent times like the one depicted in Fig. 1A. The
conditional density of coalescent time xk−1 is

f (xk−1 | xk,N(t)) =
Ck

N(xk−1)
exp

{
−

∫ xk−1

xk

Ck

N(t)
dt
}

where Ck =
(k
2

)
is the combinatorial factor depending on the

number of possible ways that two lineages can coalesce given that
there are k lineages, and N(t) is the effective population size, a
positive function of time. It follows that the complete likelihood
is given by

L(x1, . . . , xn | N(t)) = f (xn)
2∏

k=n

f (xk−1 | xk,N(t)) (2.1)

=

2∏
k=n

Ck

N(xk−1)
exp

{
−

∫ xk−1

xk

Ck

N(t)
dt
}

where again xn ≡ 0 by definition.
In the coalescentmodel with recombination (Griffiths andMar-

joram, 1997) looking backwards in time, lineages can either coa-
lesce or recombine at a random position along the chromosome.
When a lineage undergoes recombination, the lineage is split into
two. The structure representing coalescent and recombination
events is the ancestral selection graph (ARG). In the ARG, different
chromosomal segments (loci) can have different genealogies and
these genealogies are correlated (Fig. 1B). McVean and Cardin
(2005) and Marjoram and Wall (2006) introduced Markovian ap-
proximations to the ARG called SMC and SMC’ respectively. In
the SMC, two genealogies at different segments separated by a
recombination event are necessarily different, while in the SMC’,
these two genealogies are not necessarily different. Fig. 1B shows
an example realization of the SMC or SMC’ process. In this paper,

Fig. 1. (A) Genealogy of n = 8 sampled individuals. xi is the time when two of i+ 1
extant lineages coalesce. (B) Multiple genealogies along a chromosomal region.

we analyze these approximations to the ARG frompairwise coales-
cent times. Derivation for larger sample sizes involves complicated
likelihoods that are beyond the scope of this manuscript.

For n = 2, let xi denote the pairwise coalescent time at the ith
locus; and let J be the number of recombination events. In models
with recombination, loci are contiguous chromosomal segments
delineated by recombination, so we will also use J to represent
the number of completely linked loci. Under the SMC process, the
transition density from xi to xi+1, conditioned on a recombination
event at locus i + 1 is

fSMC (xi+1
| xi) =

1
xi

∫ xi+1
∧xi

0

1
N(xi+1)

q1(u, xi+1)du, (2.2)

where

qk(a, b) = exp
{
−

∫ b

a

kdt
N(t)

}
.

Given the current coalescent time xi, a recombination breakpoint u
is sampled uniformly along the height of the tree xi. At time u, one
of the two branches is pruned with equal probability, and a new
coalescent time xi+1 is drawn with the standard coalescent rate.

Under the SMC’ process, the transition density from xi to xi+1,
conditioned on a recombination event at locus i + 1 is

fSMC ′ (xi+1
| xi) =

⎧⎪⎪⎨⎪⎪⎩
1
xi
∫ xi

0

∫ xi

u
1

N(t)q2(u, t)dtdu
{
xi+1

= xi
}

1
xiN(xi+1)

∫ xi+1

0 q2(u, xi+1)du xi+1 < xi

1
xiN(xi+1)

q1(xi, xi+1)
∫ xi

0 q2(u, xi)du xi+1 > xi.

(2.3)

Given the current coalescent time xi, a recombination breakpoint
u is sampled uniformly along the height of the tree xi. At time u,
one of the two branches is selectedwith equal probability and split
into two; one of the emanating branches follows the same trajec-
tory back in time (old branch), while the other emanating branch
can coalesce further back in time with any of the remaining two
branches in the time interval (u, xi) with rate 2/N(t). Conditional
on failing to coalesce with any of the remaining branches in [u, xi],
it coalesces with a branch emanating from the root at rate 1/N(t)
at some time xi+1 > xi. The old branch is then removed. When the
new branch coalesces back with the old branch, the resulting tree
is the same as the original tree with coalescent time xi. This event
corresponds to the first case in Eq. (2.3). The likelihood under SMC
is given by

L(x1, . . . , xJ | N(t)) =
1

N(x1)
exp

{
−

∫ x1

0

dt
N(t)

} J−1∏
i=1

fSMC (xi+1
| xi),
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and the likelihood under SMC’ for n = 2 is obtained from the
previous expression replacing fSMC by fSMC ′ .

Given a current coalescent time xi, the distribution of the length
Si of the current locus under both SMC and SMC’ models is expo-
nential with rate ρli:

f (si | gi, ρ) = ρli exp(−ρlisi), (2.4)

where ρ is the recombination rate per site per generation and li is
the total tree length, that is li = 2xi, the sum of the two branch
lengths when n = 2. Since expression (2.4) does not depend on
N(t), it does not factor in the likelihood. However, it is important
to note that older coalescent timeswill occur at shorter completely
linked loci.

3. Bayes error rates in the standard coalescent

Wewill start with the simple hypothesis testing setting consid-
ered previously by Kim et al. (2015) in which the two hypotheses
are:

H1 : N(t) = aN0, T ≤ t ≤ T + S (3.1)
H2 : N(t) = bN0, T ≤ t ≤ T + S

with N(t) equal under H1 and H2 outside the interval [T , T + S];
a, b and S are positive constants and T ≥ 0 (Fig. 5). Our goal is
to determine which hypothesis represents the true state of nature
under which the data were generated. For simplicity of notation,
we associate the state of nature with a parameter ϑ ∈ {1, 2} such
that H1 : ϑ = 1 and H2 : ϑ = 2. A (binary) Bayes classifier or
decision rule ϑ(x) has the form

ϑ(x) =

⎧⎨⎩
1 BF12(x) > 1
2 BF12(x) < 1
ξ BF12(x) = 1

where BF12(x) is the Bayes factor forH1 vsH2, x is an observation of
a random variable X , and ξ ∼ Bernoulli(1/2) + 1. In the sequel,
we drop the explicit argument and simply write BF12 in place
of BF12(x). Thus, if ϑ(x) returns 1, we infer that the data were
generated under H1, whereas if ϑ(x) returns 2, we infer that the
data were generated under H2. In the case where each hypothesis
is assigned prior probability of one half, the Bayes factor is exactly
the likelihood ratio, and the probability of selecting H1 is the
probability that BF12 > 1 plus half the probability that BF12 = 1.
In this case, the probability of correct classification is

P[ϑ(X) = ϑ] =
1
2

[
P(log BF12 > 0 | H1) +

1
2
P(log BF12 = 0 | H1)

]
+

1
2

[
P(log BF12 < 0 | H2) +

1
2
P(log BF12 = 0 | H2)

]
When the prior is correct, the Bayes classifier is the optimal classi-
fier, so that the probability of correct classification using the Bayes
classifier is the maximum achievable probability. The Bayes error
rate is 1 − P[ϑ(X) = ϑ]. As such, by studying the properties of the
Bayes classifier, we obtain general limitations on inference for any
classifier or test.

We first define some notation. Let X = (X1, X2, . . . , Xn−1) be
the random vector of coalescent times with distribution given by
(2.1). When multiple genealogies are available, we will denote the
randomvariable corresponding to the collection of all J genealogies
by X J . Throughout, we abuse notation by writing P[ϑ(X) = ϑ] – or
P[ϑ(X J ) = ϑ]when J > 1– to represent theprobability of correctly
identifying the true state of nature.

The following theorems provide exact expressions for the prob-
ability of distinguishing between two hypotheses of the form (3.1)

from pairwise coalescent data under the coalescent with variable
population size (2.1).

Theorem 3.1. Consider the simple hypothesis testing problem of
the form (3.1) when a single pairwise coalescent time is observed
(n = 2) and assign equal prior probabilities to both hypotheses. Then
the probability of correctly distinguishing between the two hypotheses
is:

P[ϑ(X) = ϑ] =
1
2

+
1
2
e−Λ(T )

(
e−

δ∧S
(a∨b)N0 − e−

δ∧S
(a∧b)N0

)
where

δ ≡
abN0

b − a
log

b
a

=
abN0

a − b
log

a
b

≥ 0,

and

Λ(T ) ≡

∫ T

0

1
N(t)

dt.

Proofs of all results can be found in the Appendix. Type I and
type II error rates can be obtained from the conditional probability
expressions derived in the proof, and by modifying our proof
to consider a classifier that thresholds BF12(x) at ζ (α) for which
P[BF12(X) > ζ (α) | H1] = 1 − α, one can perform power
calculations for testing at levelα whereH1 is designated as the null.
We mention this as an obvious extension of our results, but do not
pursue power calculations in the current work.

Theorem 3.1 and most of the forthcoming results assume that
coalescence times are observed directly. In this sense, the results
are optimistic regarding the inferential limitations for recovery of
historical effective population sizes. In applications, one observes
genomic variation from which the coalescence times must be
inferred. We can obtain some insight into the implications of this
additional estimation step by assuming that coalescence times are
observed with noise, so that we observe X + ϵ rather than X . To
avoid settings in which the likelihood is not defined, we assume
that ϵ > 0. The following result shows that for small values of ϵ, the
probability of correct recovery is equal to the probability of correct
recovery in the noiseless case plus a perturbation that is linear in ϵ.
We also give an expression for the perturbation in the case where
ϵ is exponentially distributed additive noise.

Theorem 3.2. Consider the simple hypothesis testing problem of the
form (3.1) when a noisy version of a single pairwise coalescent time
is observed. Suppose Y = X + ϵ and Bayes factors are computed
using y in lieu of x. Without loss of generality, take a > b. Then if
0 < ϵ < (S ∧ δ)

P[ϑ(Y ) = ϑ] = P[ϑ(X) = ϑ]

+
ϵ

2
e−Λ(T )

(
e−

(S∧δ)
aN0

1
aN0

− e−
(S∧δ)
bN0

1
bN0

)
+ O(ϵ2).

Further, if ϵ ∼ Exponential(λ) and is independent of X we obtain

P[ϑ(Y ) = ϑ] = P[ϑ(X) = ϑ]

+
1
2
e−Λ(T )

(
1 − aN0λe

S∧δ
aN0

−(S∧δ)λ

aN0λ − 1
e−

(S∧δ)
aN0

−
1 − bN0λe

S∧δ
bN0

−(S∧δ)λ

bN0λ − 1
e−

(S∧δ)
bN0

)
,

which converges to zero at a linear rate in E[ϵ] = λ−1.

We now extend Theorem 3.1 to the case when J independent
genealogies from (2.1) are available. When multiple loci or chro-
mosomal segments are either coming fromdifferent chromosomes
or from the same chromosome at distant locations, genealogies at
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those locations can be assumed to be independent. When n = 2
and J independent genealogies with likelihood (2.1) are available,
the sample configuration L = (L1, L2, L3) of the J = L1 + L2 + L3
pairwise coalescent times is L ∼ Multinomial(J, p = (p1, p2, p3)),
where L1 is the number of pairwise coalescent times that fall in the
interval (0, T ), L2 is the number of pairwise coalescent times that
fall in the interval [T , T+S], L3 is the number of pairwise coalescent
times that are greater than T + S, and

p1 = P[X ≤ T ] = 1 − e−Λ(T )

p2 = P[T < X ≤ T + S] = e−Λ(T )
− e−Λ(T+S)

p3 = P[X > T + S] = e−Λ(T+S).

For this setting we have the following result

Theorem 3.3. Consider the simple hypothesis testing problem of the
form (3.1)when J independent pairwise coalescent times are observed
(n = 2, J ≥ 1). The probability of correctly distinguishing between the
two hypotheses is

P[ϑ(X J ) = ϑ] =
1
2
P(L2 = 0 | H1)

+
1
2

∑
(ℓ2,ℓ3):ℓ2>0

P(L = ℓ | H1)P[W ∗(ℓ2) > ℓ2δ − ℓ3S | H1, L = ℓ]

+
1
2

∑
(ℓ2,ℓ3):ℓ2>0

P(L = ℓ | H2)P[W ∗(ℓ2) < ℓ2δ − ℓ3S | H2, L = ℓ]

where W ∗(ℓ2) =
∑ℓ2

j=1 X
j
∗ is the sum of ℓ2 independent truncated

coalescent times X j
∗ ∈ [0, S], each exponentially distributed with

rate (aN0)−1 under H1, and rate (bN0)−1 under H2; δ is defined as in
Theorem 3.1, and

ℓ ∈
{
ℓ = (ℓ1, ℓ2, ℓ3) : ℓj ∈ N,

∑
j

ℓj = J
}
.

is an element of the support ofMultinomial(J, p = (p1, p2, p3)).

To obtain numerical results, we approximate the distribution
function P[W ∗(ℓ2) < t] by Monte Carlo. In the next section we
apply these results to the problem of distinguishing between two
hypotheses about the human expansion.

4. Human expansion

Many of the statistical methods proposed over the last 15 years
to infer effective population sizes from genetic data have been ap-
plied to humanwhole genomes (Li and Durbin, 2011; Schiffels and
Durbin, 2014; Sheehan et al., 2013; Palacios et al., 2015; Terhorst
et al., 2017). Several studies agree that non-African populations
have experienced two severe bottlenecks, one attributed to the ex-
pansion out-of-Africa and the other attributed to the separation of
Asian and European populations. There is, however, disagreement
in the timing and length of such events.

Fig. 2A shows a population history compatible with a human
population history recovered from autosomal DNA in standard
coalescent units (Li and Durbin, 2011). In order to convert coales-
cent parameters into real time and size, time and N(t) need to be
divided by themutation rate per generation. Times need be further
multiplied by the generation time. Tomake our results comparable
to previous studies (Li and Durbin, 2011; Kim et al., 2015), we will
assume a generation time of 25 years and that effective population
size is expressed in units of 2.732 × 104. That is, one unit in the
y-axis of Fig. 2A corresponds to 2.732 × 104 and one unit in

Fig. 2. A. Human population history in coalescent units compatible with previous
findings fromwhole genomes (Li and Durbin, 2011). One unit in the y-axis of Fig. 2A
corresponds to 2.732× 104 and one unit in the x-axis of the same plot corresponds
to 68.3×104 years. B. Probability of correct classificationP[ϑ(X J ) = ϑ] as a function
of the interval length S in years for several values of J loci corresponding to the two
hypotheses depicted in A. Red line indicates probability of 0.95 . (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

the x-axis of the same plot corresponds to 68.3 × 104 years. In
our analysis, we compare a population trajectory whose second
bottleneck starts at time T = 102.45kya (0.15 in standard units)
vs a population trajectory whose second bottleneck starts earlier
at time T + S with S ranging from 30kyr to 150kyr. Our results
from Theorem 3.3 are depicted in Fig. 2B. In order to correctly
differentiate between the two hypotheses with S = 130kyr with
probability of at least 0.95, we need at least 35 loci. A correct
classification with probability of at least 0.95 is achievable with at
least 50 loci when S = 60kyr, that is, when the bottleneck started
around 162kya vs 102kya.

Our results differ from previously published bounds based on
coalescent Bayes error rates. Kim et al. (2015) indicate that the
minimal J such that any classifier can distinguish between H1 and
H2 with probability at least 0.95 and S = 130kyr is at least J = 10;
while for S = 60kyr it is J ≈ 20. These numbers can be compared
directly with our J = 35 and J = 50, respectively. Thus, our
results indicate that 2.5–3.5 times more data are required to make
inference feasible in this scenario compared to the results of Kim
et al. (2015). A detailed analysis of the differences between our
results and previously published bounds of Kim et al. (2015) –
which reflect the fact that we give exact expressions instead of
upper bounds on P[ϑ(X J ) = ϑ] – can be found in Section 8.

4.1. Value of incorporating ancient samples

Thus far, we have not considered the effect of incorporating
samples at different sampling times, and have implicitly assumed
that all samples are obtained at present. Results from Theorems 3.1
and 3.3 can be directly applied for the case when the two samples



J.E. Johndrow and J.A. Palacios / Theoretical Population Biology 125 (2019) 75–93 79

Fig. 3. Value of incorporating ancient samples. Probability of correct classification P[ϑ(X J ) = ϑ] as a function of S in years for the human bottleneck example when samples
are obtained before the bottleneck (A) and when samples are obtained around 50kya (B). Curves for different number of loci (J) are indicated by the line patterns. Red line
indicates probability of 0.95 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

are obtained some time in the past. In particular, we assess the
change in P[ϑ(X J ) = ϑ] when samples are obtained at the end of
the bottleneck event at 102.45kya and when samples are obtained
at 50kya. These scenarios are equivalent to putting Λ(T ) = 0 and
Λ(T ) = 1.54, respectively. Ancient DNA (aDNA) corresponding to
T = 50kya is available from ancient genomes (Fu et al., 2016). Ob-
taining coalescent data from the population immediately after the
end of the event of interest is in some sense the optimal strategy
for statistical inference on that event, and can have an enormous
positive effect on inference. However, it is important to emphasize
that DNA degrades over time and inference of coalescent data
from ancient samples is more challenging. We do not attempt to
quantify this effect, and thus the results given here are in some
sense optimistic regarding the benefits of using ancient samples.
Fig. 3A shows P[ϑ(X J ) = ϑ] for J = 2, 3, 5, 10, 15when coalescent
data are available free of errors. For all but J = 2, P[ϑ(X J ) =

ϑ] ≥ 0.95 can be achieved for S greater than about 115kyr. For
J = 15, it is possible to achieve P[ϑ(X J ) = ϑ] ≥ 0.95 with S larger
than about 15kyr. When the samples are available from 50kya, it
is possible to achieve P[ϑ(X J ) = ϑ] ≥ 0.95 with at least J = 20
loci. Thus, neglecting the effect of degradation of ancient samples,
their use can significantly reduce the amount of data required
to reach reasonable certainty regarding the true population size
history.

5. Increasing the number of samples

Nowwe consider the case where n > 2. The following theorem
gives an exact expression for the probability of correct classifica-
tion in (3.1) from a single locus (J = 1) when n = 3.

Theorem 5.1. Consider the simple hypothesis testing problem of
the form (3.1) when a single genealogy of n = 3 individuals is
observed. Define δ as in Theorem 3.1, then the success rate of the
optimal classifier is

P[ϑ(X) = ϑ] =
1
2

+
1
4
e−3Λ(T )ξ (a, b,N0, T , S)

where

ξ (a, b,N0, T , S) = 3e2Λ(T )
[
e−

δ∧S
aN0 − e−

δ∧S
bN0

]
+ 3

[
e−

2
(
0∨
(

δ−S
2 ∧S

))
+S

aN0 − e−
2
(
0∨
(

δ−S
2 ∧S

))
+S

bN0

]

− 3
[
e−

δ∧S
aN0 − e−

δ∧S
bN0

]

+

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 S < 2
3δ

e−
2δ
bN0

(
1 +

2δ−3S
bN0

)
− e−

2δ
aN0

(
1 +

2δ−3S
aN0

)
2
3δ < S < 2δ

e−
2δ
aN0

(
4δ
aN0

+ 2
)

+ e−
2δ
bN0 − 3e

T−2δ−S
bN0

+ e−
2δ+S
bN0 3T−3S−4δ

bN0
S > 2δ

The proof is located in Appendix D. We can use this result to
assess howmuch an additional sample helps in identifying the true
population size history. Fig. 4 shows four examples of P[ϑ(X) = ϑ]

as a function of a while fixing b = 1; increasing a is equivalent to
increasing the separation between the two hypothetical popula-
tion size histories. In two of the examples, N(t) = 1 outside the
interval [T , T + S], and in the other two N(t) = et outside this in-
terval. In both cases, the probability of identifying the true effective
population size function is considerably higher with n = 3 than
n = 2when |a − b| is not too close to zero.While themagnitude of
increase differs for the two scenarios, additional coalescent times
can help considerably to distinguish between alternative histories.

It is clear from the proof of Theorem 5.1 that while it is possible
to obtain exact expressions for n > 3, the number of cases that
must be treated will grow exponentially in n. Of course, it is still
possible to approximate P[ϑ(X) = ϑ] by simulation for arbitrary
n. Here,we re-analyze the human expansion classification problem
considered in Section 4 for n = 10 and J = 1, 5, 10, 20 as a
function of interval length S and compare to n = 2. The value of
P[ϑ(X J ) = ϑ] is approximated by 10,000 Monte Carlo samples.
Results are shown in Fig. 5. In contrast to the case of n = 2,
where J = 50 was required to achieve P[ϑ(X J ) = ϑ] = 0.95
for S = 60Kyr, when n = 10 it is possible to achieve the same
success probability with J = 20. Thus, increasing the number of
contemporaneous sequences or loci gives sharper inference on the
duration of the second expansion, but the effect is highly sublinear
in n.

6. Other scenarios

We now consider a more general classification problem when
pairwise coalescent data is available at a single locus or multiple
loci:
H1 : N(t) = N1(t)
H2 : N(t) = N2(t).

(6.1)
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Fig. 4. Effect of adding an additional sample. Probability of correct classification P[ϑ(X) = ϑ] as a function of a for classification problem (3.1). In each case we put
T = 1, S = 1/2, and b = 1. We compare the effect of adding one more sample (n = 2 vs n = 3) for constant and exponential growth population trajectories.

We consider the case where N2(t) = cN1(t) for c ∈ (0, 1), where
analytic expressions forP[ϑ(X) = ϑ] are available evenwhenN1(t)
is not piecewise constant.

Theorem 6.1. Consider the simple hypothesis testing problem of
the form (6.1) such that N2(t) = cN1(t) with 0 < c < 1 when a
single pairwise coalescent time is observed (n = 2) and assign equal
prior probabilities to both hypotheses. Then the probability of correct
classification is:

P[ϑ(X) = ϑ] =
1
2
c

c
1−c +

1
2

(
1 − c

1
1−c

)
.

Theorem 6.2. Consider the conditions of Theorem 6.1 for J indepen-
dent loci. The probability of correct classification is

P[ϑ(X J ) = ϑ] =
1
2

(
1 −

1
Γ (J)

[
γ

(
J,

−Jc log c
1 − c

)
− γ

(
J,

J log c
c − 1

)])
. (6.2)

where γ (a, b) is the lower incomplete gamma function.

Fig. 6 shows (6.2) as a function of c for different values of J .
As expected, the larger J , the larger the value of c at which high
probability of identifying the true population size history can be
achieved. However, even for J = 100, we must have c ≈ 0.75
or smaller to give probability 0.95 of selecting the true population
size history. Our results from Theorems 6.1 and 6.2 differ from
previously published Bayes error rates bounds (Kim et al., 2015).
In Section 8, we present a more detailed analysis of the differences
between our exact expressions and the bounds (Kim et al., 2015).

7. Bayes error rates in the sequentially markov coalescent

We now consider the same classification problem as in (3.1)
from J ≥ 2 consecutive loci along a chromosomal region. We
assume the ideal scenario in which we observe the J ≥ 2 pairwise
coalescent times (n = 2) corresponding to each of these J loci

Fig. 5. Effect of adding more samples in the human expansion scenario Blue lines
represent P[ϑ(X) = ϑ] as a function of bottleneck length S for n = 10 and black
lines represent P[ϑ(X) = ϑ] for n = 2. Different number of loci are distinguished
by line patterns. Red line indicates probability of 0.95 . (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

separated by J − 1 recombination events. Further, we assume that
effective population size trajectories under H1 and H2 are piece-
wise constant functions over time such as the human expansion
scenario in Fig. 2A. We then approximate P[ϑ(X J ) = ϑ] by Monte
Carlo from 10,000 simulations generated from each hypothesis
under the two coalescent models with recombination: SMC (2.2)
and SMC’ (2.3).

We re-analyze the human expansion classification problem
considered in Section 4 for n = 2 and J = 2, 5, 10, 20, 30, 35 as
function of interval length S under independent loci Theorem 3.3,
SMC’ (2.3) and SMC (2.2). Our results are depicted in Fig. 7. We
show that either under SMC’ or independent loci, P[ϑ(X J ) = ϑ] =

0.95 is achievable with J = 35 loci. For 2 ≤ J < 20, the
Bayes error rate in SMC is smaller than the other two alternatives.
The significance of this is that it is not necessary to have many
independently segregating loci tomake inference on features of the
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Fig. 6. Left. Probability of correct classification P[ϑ(X) = ϑ] as in (6.2) when N2(t) = cN1(t) and J = 1 (Theorem 6.1). Right. P[ϑ(X J ) = ϑ] as a function of c for several
values of J .

Fig. 7. Sequentially Markov coalescent in the human expansion scenario Probability of correct classification under independent sampling, SMC’ and SMC. Different patterns
represent different number of loci. Red line indicates probability of 0.95 . (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

historical population size. Instead, for the hypotheses considered,
the same number of non-independent loci separated by recombi-
nation events will suffice. The set of all dependent loci is of course
considerably larger than the largest set of independent loci, so the
result suggests optimism in the potential to reconstruct features of
the population size trajectory in the relatively distant past.Wenote
that in the more general setting of Theorem 6.2, the probability
of correct classification from independent loci is higher than from
correlated loci under the SMC’ model (Fig. 9).

Bayes error rates in the renewal approximation of sequen-
tially Markov coalescent

Carmi et al. (2014) proposed a renewal approximation to the
sequentially Markov coalescent models SMC and SMC’ for a pair of
chromosomes, in which the pairwise coalescent times at contigu-
ous segments separated by a recombination event are independent
and distributed according to a position-independent stationary
distribution. The stationary distribution of the pairwise coalescent

time under SMC and SMC’ (Carmi et al., 2014) is

π (x) =

x
N(x) exp

{
−
∫ x
0

dt
N(t)

}
∫

∞

0 exp
{
−
∫ u
0

dt
N(t)

}
du

=
x

µN(x)
exp

{
−

∫ x

0

dt
N(t)

}
,

(7.1)

where µ is the expected pairwise coalescent time under the initial
marginal density:

µ =

∫
∞

0

x
N(x)

exp
{
−

∫ x

0

dt
N(t)

}
dx.

The stationary density π (x) may be interpreted as the density of
a pairwise coalescent time in a randomly chosen chromosomal
segment. Convergence to the stationary distribution under SMC
and SMC’ is achieved after J = 9 recombinationswhen the effective
population size is 1. Figure 3 in Carmi et al. (2014) shows the con-
vergence under the SMC model and Fig. 8 shows the convergence
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Fig. 8. Convergence to stationarity. Marginal density of the pairwise coalescent time under the SMC’ model after J = 0, 1, . . . , 9 recombination events when the population
size is Ne = 1 (left) and when the population size trajectory corresponds to H1 in Fig. 2. In both cases, the marginal distribution after 9 recombinations (Tree 10) converges
to the stationary distribution.

Fig. 9. Comparison between SMC’, independent loci and renewal approximation from pairwise coalescent data. Probability of correct classification in the setting of
Theorems 6.2 and 7.2 for three values of c of 0.5, 0.7 and 0.9. The renewal approximation achieves the greatest probability of correct classification.

under the SMC’ model with Ne = 1 (left) and the population size
trajectory of H1 in the human expansion scenario (right).

The log Bayes factor log BFπ
12 assuming the stationary distri-

bution π (x) of Eq. (7.1) corresponds to the Bayes factor under
independent loci (BF12) plus an extra constant that is a function
of the expected pairwise coalescent times under both hypotheses.
That is

log BFπ
12 = log BF12 + log(µ2/µ1), (7.2)

where µi is the expected pairwise coalescent time under Hi. For
the particular case when N2(t) = cN1 and N1(t) = N1, µ2 = cµ1,
log BFπ

12 = log BF12 + log(c). The following theorems state the
probability of correct classification from pairwise coalescent data
under the renewal approximation.

Theorem 7.1. Consider the simple hypothesis testing problem of
the form (6.1) such that N1(t) = N1 and N2(t) = cN1 with 0 <

c < 1 when a single pairwise coalescent time is observed (n = 2)
from the stationary distribution π (x) of Eq. (7.1) and assign equal
prior probabilities to both hypotheses. Then the probability of correct
classification is:

P[ϑ(X) = ϑ] =
1
2
c

2c
1−c +

1
2

(
1 − c

2
1−c

)
− log(c)c

1+c
1−c .

Theorem 7.2. Consider the conditions of Theorem 7.1 for J indepen-
dent loci. The probability of correct classification is

Pπ [ϑ(X J ) = ϑ]

=
1
2

(
1 −

γ
(
2J, 2J c

1−c log
1
c

)
+ γ

(
2J, 2J 1

c−1 log c
)

Γ (2J)

)
. (7.3)

where γ (a, b) is the lower incomplete gamma function.

Comparing our results from Theorems 6.2 and 7.2, the prob-
ability of correct classification under the renewal approximation
corresponds to the probability of correct classification under in-
dependent loci from twice the number of loci. We find this result
counterintuitive, however, the renewal approximation, SMC’ and
SMC are all approximations to the ancestral recombination graph.
The renewal approximation is another model of recombination
and not necessarily a good approximation to the SMC or SMC’.
Fig. 9 shows a comparison of the probability of correct classification
for different values of c under the SMC’ model, independent loci
model and the renewal approximation. In the three cases: SMC’,
independent loci and renewal approximation, the probability of
correct classification increases logarithmically with the number of
loci.

We note that previous analysis is valid when n = 2. If we
assume a constant recombination rate per site per generation of
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Fig. 10. Exact P[ϑ(X) = ϑ] (blue) and upper bound on this quantity from Kim et al. (2015) (yellow) for different values of T , S, and N0 . (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

ρ = 2 × 10−9, then when n = 2 and N(t) = N0 = 2.732 × 104,
the expected length of a locus is 1/ρl = 1/(2 × 10−9

× 2 ×

2.732 × 104) ≈ 9, 151 base pairs. In a genome of 3 billion base
pairs, we would expect around 330,000 completely linked loci.
Increasing the number of samples increases the tree length and
therefore the overall rate of recombination increases (Eq. (2.4)) and
the expected number of completely linked loci increases for the
same chromosomal region. In addition, the number of loci required
to distinguish between two hypotheses greatly depends on the
hypotheses considered. The number of independent loci required
to obtain a probability of 0.95when the two hypotheses are similar
to each other (c = .9 in Fig. 9) is of the order of 980 loci (number
obtained by direct application of Theorem 6.2) and for c = .95,
the number of independent loci required is around 4,150.Wewant
to point out that these numbers are very conservative since we
are assuming that coalescent data are available and therefore our
results should be interpreted as upper bounds on the achievable
probability of recovering the truth.

8. Comparison to results of Kim et al. (2015)

Kim et al. (2015) provided lower bounds on Bayes error rates
from pairwise coalescent data. We now provide a comparison of
some of our results to these previously published bounds. In this
section, we will let Y denote a random coalescence time generated
underH1 and Z denote a randomcoalescence time generated under
H2. Assuming a classification problem of the form (3.1) and prior
probability 1/2 on H1 and H2, the Bayes error rate for any classifier
is at least (1 − Υ )/2 where

Υ = dTV(Y , Z) = dTV(µ, ν) ≡ sup
A

|µ(A) − ν(A)|

is the total variation distance between probability measures µ, ν,
such that Y ∼ µ, Z ∼ ν. The authors then apply the inequality

1
2
d2
TV ≤ d2

H

where dH is the Hellinger distance. Let P and Q be probability
measures that are absolutely continuous with respect to some
dominatingmeasure λ, and let fP =

dP
dλ , fQ =

dQ
dλ be their respective

Radon–Nikodym derivatives. The Hellinger distance between P
and Q is defined by

d2
H(P,Q ) =

1
2

∫
(
√
fP −

√
fQ )2dλ.

In the casewhere λ is Lebesguemeasure, fP and fQ are the densities
of P and Q . The main result of Kim et al. (2015) is

Theorem 8.1 (Kim et al. (2015), Theorem 1). Suppose n = 2 in (2.1).
Then

d2
H(Y , Z) = e−

∫ T
0

1
N(t) dt

(
1 − e−

(a+b)S
2abN0

)
(
√
a −

√
b)2

a + b
.

We give a proof in the appendix that fills in some additional
details of the proof in Kim et al. (2015). Rather than obtaining
bounds on the Bayes error rate using the Hellinger distance, we
compute the probability of correct inference on ϑ .

In Fig. 10, we compare our results to the Hellinger bounds
of Kim et al. (2015) for different values of a, b,N0. The upper bound
based on the Hellinger distance from Kim et al. (2015) is given by
1
2

+
1
2

√
2H2(f1, f2)

with H2(f1, f2) as in (J.3). Evidently the Hellinger bound is quite
loose when |a − b| is not near zero.

Kim et al. (2015) use the inequality

d2
H (Y

J , Z J ) ≤ Jd2
H (Y , Z), (8.1)

which holds when the J genealogies are independent, in combi-
nation with Theorem 8.1, to obtain lower bounds on the error
rate for J independent loci. They then use these lower bounds to
calculate quantities like bounds on the minimal S such that the
correct hypothesiswill be selectedwith probability 0.95 for several
examples.

It is worth noting that the existence of the inequality in (8.1)
is not a special feature of the Hellinger distance. Indeed, the total
variation distance obeys the inequalities

dTV(Y J , Z J ) ≤ JdTV(Y , Z) (8.2)

dTV(Y J , Z J ) ≤

√
2J
√
dTV(Y , Z).
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Fig. 11. Exact P[ϑ(X J ) = ϑ] compared to the upper bound from Theorem 3.2 of Kim et al. (2015) as a function of c for two different values of J .

Although these inequalities are well-known, we provide a proof
sketch in Appendix K of the appendix. Thus there is no inter-
pretability advantage in bounding the total variation for J = 1
by the Hellinger and then applying (8.1). We emphasize that an
important message of this work is that bounds of the form (8.1) or
(8.2) have significant limitations for understanding the behavior of
dTV(Y J , Z J ) (equivalently, P[ϑ(X J ) = ϑ]) for either large or small J .
The quantity of interestP[ϑ(X J ) = ϑ] lies in the interval [0.5, 1], so
errors of size 0.1 or 0.05, or even 0.01 in some cases, are significant.
This is reflected in the fact that roughly 3 times larger J is necessary
to obtain P[ϑ(X J ) = ϑ] = 0.95 in the human expansion scenario
as the inequalities in Kim et al. (2015) suggest. The reason for this
is straightforward. When J is small, the inequalities in (8.2) or (8.1)
– particularly the latter, since there is also error due to bounding
the total variation by the Hellinger – can be quite loose. When J
grows large, the resulting bound on P[ϑ(X J ) = ϑ] quickly becomes
1, so the inequality is trivial. By contrast, P[ϑ(X J ) = ϑ] is never
identically 1 for any finite J , and only approaches 1 in the limit as
J → ∞. When quantities such as minJ{J : P[ϑ(X J ) = ϑ] > 1 − α}

are of interest, the answers obtained using the inequality (8.1) can
differ substantially from the exact value.

This motivates our preference throughout the paper of giving
the exact value of P[ϑ(X J ) = ϑ], which allows us to compute
exactly the value of S to achieve the desired Bayes error rate for any
J . It is preferable to do this numerically usingMonte Carlowhen the
exact expression is unavailable than it is to use the upper bounds in
(8.2) or (8.1) when seeking sharp results, which is our focus here.
The results on the minimal number of loci J necessary to achieve
a fixed error rate differ substantially from the results in Kim et al.
(2015). The looseness of the bound on P[ϑ(X) = ϑ] obtained using
the Hellinger distance is clear from Fig. 10, but as we now show,
additional looseness is introduced by relying on (8.1).

The expression in (6.2) can be directly compared with Theorem
3.2 of Kim et al. (2015). Translated into our notation and conven-
tions, this result states that

P[ϑ(X J ) = ϑ] ≤
1
2

+
1
4

√
J(n − 1)

(
1
c

− 1
)

. (8.3)

Fig. 11 shows the bound from (8.3) alongwith the exact probability
of identifying the trueN(t) as a function of c for n = 2 and different
values of J . The bound is apparently quite loose when c is not close
to 1. It becomes trivial (greater than 1) for c ≈ 0.4 when J = 1 and
c ≈ 0.7 when J = 10. The differences can be extremely large. Note
that the quantity P[ϑ(X J ) = ϑ] ∈ [0.5, 1], so if one knows nothing
at all about the problem and just approximates P[ϑ(X J ) = ϑ] by
0.75, it is never possible to make an absolute error of more than
0.25. When c ≈ 0.65 and J = 10, the upper bound from Kim et al.
(2015) given in (8.3) gives P[ϑ(X J ) = ϑ] = 1, while the exact value
is P[ϑ(X J ) = ϑ] ≈ 0.75 (see the right panel of Fig. 11). This is an
absolute error of 0.25, which is the largest error one can ever make
by using the naive estimate P[ϑ(X J ) = ϑ] = 0.75. Thus, the bound
in (8.3) is sometimes no better than guessing, even in very simple
settings.

9. Risk of point estimates under conjugate priors

Although our focus has been on inferential limits for distin-
guishing among two states of nature, we briefly consider estima-
tion of a constant population size trajectory. We assess the risk of
estimators of the function Λ(x) in the case of n = 2 and N(t) =

1
c

with conjugate priors on c . In this setting, the coalescent time x is
Exponential(c) with conjugate prior c ∼ Gamma(α, β) and for a
sample of J independent pairwise coalescent times we have

c | x(1), . . . , x(J) ∼ Gamma(α + J, β + J x̄)

with posterior expectation

ĉ = E[c | x(1), . . . , x(J)] =
α + J
β + J x̄

.

Note that

Z ≡ J X̄ | c ∼ Gamma(J, c)

so the Frequentist squared error risk of the posterior expectation
of c is

R(ĉ, c) :=

∫
∞

0

(
α + J
β + z

− c
)2 c J

Γ (J)
z J−1e−czdz. (9.1)

Taking α = β = 1 – the unit-rate exponential prior on c – the risk
can be expressed as

R(ĉ, c) = c J (J + 1)2Ψ (J, J − 1, c)− 2(J + 1)c J+1Ψ (J, J, c)+ c2 (9.2)

where Ψ is the Tricomi confluent hypergeometric function (see
Gradshteyn and Ryzhik (1996, 9.211)) defined by

Ψ (a, b, c) ≡

∫
∞

0
za−1e−cz(1 + z)b−a−1dz;

details are given in the Appendix. Fig. 12 shows the square root
of risk as a function of the number of loci J for values of J ∈

{1, . . . , 100} with c = 1. The root risk decreases logarithmically
in J; it is approximately 0.1 for J = 100, and about 0.24 for J = 20.
Thus, if one wants the root risk to be small relative to the truth, it
is necessary to have J rather large. In this example, in order to have
the root risk be about 10 percent the magnitude of the truth, we
need J ≈ 100.

10. Discussion

Availability of ancient and present-day DNA samples from a
population allows statistical reconstruction of the effective pop-
ulation size trajectory. The effective population size is a measure
of relative genetic diversity whose actual magnitude is not eas-
ily interpreted in units of census population size (Wakeley and
Sargsyan, 2009). However, changes of effective population size
over time are informative about the genetic history of the popu-
lation. In this manuscript, we assess the ability to differentiate or
classify between alternative hypotheses about the effective popu-
lation size.
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Fig. 12. Root risk of Bayes estimator with α = β = 1 and c = 1.

Assessment of inferential limits in population genetic studies
is becoming important in the face of ongoing large-scale studies
of genetic variation. Statistical methods are usually restricted to
small samples or rely on approximations and insufficient summary
statistics. As such, choosing the optimal subset of data with which
to perform statistical inference is of great interest. Aspects of the
data and adequacy of the model will affect the ability to draw
meaningful conclusions. For most of our results, we have elimi-
nated the effect of factors such as data quality, sample selection
and sequence alignment and concentrated on the ideal scenario
of having a complete realization of the genealogical process free
of errors. In practice, genealogies are not available and instead
we observe DNA sequence variation; therefore our results are
upper bounds on the achievable probability of recovering the true
population size history in population genetic studies. These results
provide guidance to practitioners in choosing a sampling design
subject to computational constraints. In particular, they give in-
sight into the key questions of which scientific hypotheses can be
assessed, and the optimal choice of the number of loci, sampling
times, and number of individuals to include in a sample. They also
offer a possible explanation for disagreement in the literature over
timing and duration of historical genetic events such as the out-of-
Africa human population bottleneck, suggesting that some studies
may simply not have sufficient data to distinguish between the
hypotheses of interest with high probability.

Fu and Li (1993); Pluzhnikov and Donnelly (1996), and Felsen-
stein (2006) argued that in the constant population model (θ =

2Nµ), accuracy of estimators of θ increases linearly in the number
of independent loci, logarithmically in the number of samples, and
is unaffected by sequence length. In the coalescent with variable
population size, Myers et al. (2008) showed that estimators based
on the SFS cannot distinguish between two alternative hypothe-
ses. Terhorst and Song (2015) showed that estimators of N(t),
based on the same statistic SFS, have minimax rate of conver-
gence that is logarithmic in the number of independent loci and
independent of the number of individuals sampled. Kim et al.
(2015) provided lower bounds on Bayes error rates from pairwise
coalescent data from independent loci and show that the Bayes
error rate goes to zero with the squared root of the number of
loci. Our work is closely related to the work of Kim et al. (2015). In
this work, we investigate the number of loci and samples needed
to correctly differentiate between alternative hypotheses about
the effective population size (one minus the Bayes error rate)
when genealogical data are available. We consider cases under
independent loci and under some models of recombination. Our
calculations from pairwise coalescent data and independent loci
differ to Kim et al. (2015) in that we provide exact calculations
instead of bounds. We show that for some cases, the difference
between the bounds and the exact calculations is significant. Our
results support a complex view of the value of additional samples

or loci. While in general, the improvement in the probability of
recovering the true population history appears to be sublinear in
both J and n, the improvement from adding an additional sample
or locus depends greatly on the details of the two hypotheses
being considered and the independence assumption across loci.
For example, increasing from n = 2 to n = 3 samples can in
some cases double the excess probability of recovering the truth
P[ϑ(X) = ϑ] − 1/2 (the probability is always lower bounded by
1/2). In general, smaller improvements are seen from increasing J ,
but we have demonstrated that high probability of recovering the
true population size history in the human expansion example is
attainable using values of n and J that are available from modern
datasets and for which exact computation is feasible. In addition,
our results suggest that incorporation of ancient genomes is the
optimal strategy to improve inferential performance in the human
expansion problem, which is of significant interest in human pop-
ulation genetics.

Pluzhnikov and Donnelly (1996) considered the constant pop-
ulation model with recombination and argued that when the
recombination rate is high, increasing the sequence length effec-
tively increases the number of independent loci. Indeed, when
two genomic segments are separated by a recombination event,
individuals at these two segments (loci) derive from two differ-
ent but correlated genealogies. As the number of recombination
events increases, the correlation between the two genealogies
becomes weaker, and hence increasing the length of sequenced
segments increases the opportunity to observe a larger number of
realizations from genealogically independent loci (Palacios et al.,
2015; Griffiths and Marjoram, 1997). Our results for the pairwise
SMC’ model of recombination support the conclusion that loci
separated by recombination events havenearly the statistical value
as the same number of independent loci in the human expansion
example. For a different testing scenario of constant population
size and pairwise coalescent data, our results show that indepen-
dent loci offer better statistical value in some cases. This suggests
that pairwise SMC’ is a very powerful framework for inference of
population size trajectories. An interesting future area of research
is to analytically explore the effect of the number of loci and
samples under the SMC’ in more general settings that the ones
explored in this manuscript.
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Appendix A. Proof of Theorem 3.1

Proof. Define

Λ(w, x) ≡

∫ x

w

1
N(t)

dt.

For shorthand we write Λ(x) = Λ(0, x). Λ : R+ → R+ is a mono-
tone strictly increasing function, which is enough to guarantee the
existence of an inverse

Λ−1(t) = x ⇐⇒ Λ(x) = t,

The likelihood ratio for H1 vs H2 (3.1) can be expressed by

log BF12(x) =

⎧⎨⎩
0 x < T
log b

a −
x−T
aN0

+
x−T
bN0

T ≤ x < T + S
S

bN0
−

S
aN0

T + S ≤ x
(A.1)

Notice that thewaiting time until the coalescent event has survival
function

P[X > x] = e−Λ(x).
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Now we want to calculate P[ϑ(X) = 1 | H1]. Assume that if
log BF12(x) = 0 we select either H1 or H2 by flipping a fair coin.
If a > b then

log BF12(x) > 0, T ≤ x ≤ T + S ⇐⇒ x > δ + T ,

and if b > a

log BF12(x) > 0, T ≤ x ≤ T + S ⇐⇒ x < δ + T .

Assuming a > b and denoting fi(x) the density under Hi for
i = 1,2, we have

P[ϑ(X) = 1 | H1]

=
1
2
P[X < T | H1] +

∫ T+S

T
1
{
x >

ab
b − a

N0 log
b
a

+ T
}
f1(x)dx

+ 1{b < a}P[X > T + S | H1]

=
1
2
(1 − e−Λ(T )) +

∫ T+S

T+(δ∧S)
e−Λ(T ) 1

aN0
e−

x−T
aN0 dx + e−Λ(T )− S

aN0

=
1
2
(1 − e−Λ(T )) + e−Λ(T )

[
e−

δ∧S
aN0 − e−

S
aN0

]
+ e−Λ(T )− S

aN0 ,

and

P[ϑ(X) = 2 | H2]

=
1
2
P[X < T | H2] +

∫ T+S

T
1
{
x <

ab
b − a

N0 log
b
a

+ T
}
f2(x)dx

+ 1{a < b}P[X > T + S | H2]

=
1
2
(1 − e−Λ(T )) +

∫ T+(δ∧S)

T
e−Λ(T ) 1

bN0
e−

x−T
bN0 dx

=
1
2
(1 − e−Λ(T )) + e−Λ(T )

[
1 − e−

δ∧S
bN0

]
Assuming equal prior probability of H1 and H2 we get

P[ϑ(X) = ϑ] =
1
2
(1 − e−Λ(T )

+ e−Λ(T )− S
(a∨b)N0 )

+
1
2
e−Λ(T )

[
e−

δ∧S
aN0 − e−

S
aN0

]
+

1
2
e−Λ(T )

[
1 − e−

δ∧S
bN0

]
=

1
2

+
1
2
e−Λ(T )

(
e−

S
(a∨b)N0 − e−

S
aN0

)
+

1
2
e−Λ(T )

(
e−

δ∧S
aN0 − e−

δ∧S
bN0

)
=

1
2

+
1
2
e−Λ(T )

(
e−

δ∧S
aN0 − e−

δ∧S
bN0

)
.

This assumed a > b. If instead b > a then the inequalities in
the integrand when we integrate between T and T + S would be
reversed, so the exact expression for any a > 0, b > 0 is

P[ϑ(X) = ϑ] =
1
2

+
1
2
e−Λ(T )

(
e−

δ∧S
(a∨b)N0 − e−

δ∧S
(a∧b)N0

)
. □ (A.2)

Appendix B. Proof of Theorem 3.2

Fix an unknown constant ϵ > 0 and assume that we observe
Y = X + ϵ. The likelihood ratio for H1 vs H2 (3.1) can be expressed
by

log BF12(y) =

⎧⎨⎩
0 0 < y < T
log b

a −
y−T
aN0

+
y−T
bN0

T ≤ y < T + S
S

bN0
−

S
aN0

T + S ≤ y
(B.1)

Assume first a > b. Then

log BF12(y) > 0, T ≤ x + ϵ ≤ T + S ⇔ y > δ + T

just as before. The main difference here is that the distribution of
Y = X + ϵ differs from that of X . If we assume ϵ > 0 then y has
density fi(y − ϵ) under hypothesis Hi (the point of assuming ϵ > 0
is so that we can avoid the problem of the density being zero on
the negative half-line). So we have

P[ϑ(Y ) = 1 | H1]

=
1
2
P[0 < Y < T | H1] +

∫ T+S

T
1 {y > δ + T } f1(y − ϵ)dy

+ 1{b < a}P[Y > T + S | H1]

=
1
2
P[0 < X < T − ϵ | H1] +

∫ T+S−ϵ

T−ϵ

1 {x > δ + T − ϵ} f1(x)dx

+ P[X > T + S − ϵ | H1]

=
1
2
(1 − e−Λ(T−ϵ))

+

∫ T

T−ϵ

1 {x > δ + T − ϵ} f1(x)dx

+

∫ T+S−ϵ

T
1 {x > δ + T − ϵ} f1(x)dx

+

∫ T+S

T+S−ϵ

f1(x)dx +

∫
∞

T+S
f1(x)dx

Performing the last two integrals and rearranging terms we obtain

=
1
2
(1 − e−Λ(T−ϵ)) + e−Λ(T )− S−ϵ

aN0 − e−Λ(T )− S
aN0 + e−Λ(T )− S

aN0

+

∫ T

(T+δ−ϵ)∧T
f1(x)dx +

∫ T+S−ϵ

T+(((S∧δ)−ϵ)∨0)
1 {x > δ + T − ϵ} f1(x)dx

=
1
2
(1 − e−Λ(T−ϵ)) + e−Λ(T )− S−ϵ

aN0 + e−Λ((T+δ−ϵ)∧T )
− e−Λ(T )

+

∫ T+S−ϵ

T+(((S∧δ)−ϵ)∨0)
1 {x > δ + T − ϵ} f1(x)dx

=
1
2
(1 − e−Λ(T−ϵ)) + e−Λ(T )− S−ϵ

aN0 + e−Λ((T+δ−ϵ)∧T )
− e−Λ(T )

+ e−Λ(T )− ((S∧δ)−ϵ)∨0
aN0 − e−Λ(T )− S−ϵ

aN0

=
1
2
(1 − e−Λ(T−ϵ)) + e−Λ((T+δ−ϵ)∧T )

− e−Λ(T )
+ e−Λ(T )− ((S∧δ)−ϵ)∨0

aN0

and

P[ϑ(Y ) = 2 | H2]

=
1
2
P[X < T − ϵ | H2] +

∫ T+S−ϵ

T−ϵ

1 {x < δ + T − ϵ} f2(x)dx

+ 1{a < b}P[X > T + S − ϵ | H2]

=
1
2
(1 − e−Λ(T−ϵ)) +

∫ T∧(T+δ−ϵ)

T−ϵ

f2(x)dx

+

∫ T+S−ϵ

T
1 {x < δ + T − ϵ} f2(x)dx

=
1
2
(1 − e−Λ(T−ϵ)) + e−Λ(T−ϵ)

− e−Λ(T∧(T+δ−ϵ))

+

∫ T+((S∧δ)−ϵ)∨0

T
f2(x)dx

=
1
2
(1 − e−Λ(T−ϵ)) + e−Λ(T−ϵ)

− e−Λ(T∧(T+δ−ϵ))

+ e−Λ(T )
− e−Λ(T )− ((S∧δ)−ϵ)∨0

bN0

and again using the equal prior probability and combining

P[ϑ(Y ) = ϑ] =
1
2

+
1
2
e−Λ(T )

(
e−

((S∧δ)−ϵ)∨0
aN0 − e−

((S∧δ)−ϵ)∨0
bN0

)
.
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Assuming S ∧ δ > ϵ we have

P[ϑ(Y ) = ϑ]

=
1
2

+
1
2
e−Λ(T )

(
e−

(S∧δ)−ϵ
aN0 − e−

(S∧δ)−ϵ
bN0

)
=

1
2

+
1
2
e−Λ(T )

(
e−

(S∧δ)
aN0

(
1 +

ϵ

aN0
+ O(ϵ2)

)
− e−

(S∧δ)
bN0

(
1 +

ϵ

bN0
+ O(ϵ2)

))
= P[ϑ(X) = ϑ] +

ϵ

2
e−Λ(T )

(
e−

(S∧δ)
aN0

1
aN0

− e−
(S∧δ)
bN0

1
bN0

)
+ O(ϵ2).

If ϵ ∼ Exponential(λ) then since∫ S∧δ

0
λe−λϵe−

((S∧δ)−ϵ)∨0
aN0 dϵ = e−

(S∧δ)
aN0

∫ S∧δ

0
e

ϵ
aN0 λe−λϵdϵ

=
aλN0

1 − aλN0

(
e−λ(S∧δ)

− e−
(S∧δ)
aN0

)
we obtain

P[ϑ(Y ) = ϑ] = E[P[ϑ(Y ) = ϑ | ϵ]]

=
1
2

+ E
[
1
2
e−Λ(T )

(
e−

((S∧δ)−ϵ)∨0
aN0 − e−

((S∧δ)−ϵ)∨0
bN0

)]
=

1
2

+
1
2
e−Λ(T )E

[(
e−

((S∧δ)−ϵ)∨0
aN0 − e−

((S∧δ)−ϵ)∨0
bN0

)
1(ϵ < (S ∧ δ))

]
=

1
2

+
1
2
e−Λ(T )

(
aN0λ(1 − e

S∧δ
aN0

−(S∧δ)λ)
aN0λ − 1

e−
(S∧δ)
aN0

−
bN0λ(1 − e

S∧δ
bN0

−(S∧δ)λ)
bN0λ − 1

e−
(S∧δ)
bN0

)
= P[ϑ(X) = ϑ] +

1
2
e−Λ(T )

(
1 − aN0λe

S∧δ
aN0

−(S∧δ)λ

aN0λ − 1
e−

(S∧δ)
aN0

−
1 − bN0λe

S∧δ
bN0

−(S∧δ)λ

bN0λ − 1
e−

(S∧δ)
bN0

)
Appendix C. Proof of Theorem 3.3

Proof. Fix an integer J ≥ 1 and define a1 = a, a2 = b for ease of
notation.Without loss of generality, take a > b. We first define the
following auxiliary functions

Qi(T ) ≡ e−
∫ T
0

dt
Ni(t) , Qi(T , T + S) ≡ e−

∫ T+S
T

dt
Ni(t)

qi(T ) ≡
1

Ni(T )
e−

∫ T
0

dt
Ni(t) , qi(T , T + S) ≡

1
Ni(T + S)

e−
∫ T+S
T

dt
Ni(t)

The coalescent density for a coalescent timewith effective popula-
tion size trajectory N for the intervals (0, T ] and (T + S, ∞) and Ni
for the interval (T , T + S] is

fi(t) =

⎧⎨⎩
q(t) 0 < t < T
Q (T )qi(T , t) T ≤ t < T + S
Q (T )Qi(T , T + S)q(T + S, t) t ≥ T + S

so that the likelihood ratio for a single time point can be expressed
as

f1(xj)
f2(xj)

=

[
q1(T , xj)
q2(T , xj)

]1{T≤xj<T+S} [Q1(T , T + S)
Q2(T , T + S)

]1{xj≥T+S}

=

[
b
a
e−

(b−a)(xj−T )
abN0

]1{T≤xj<T+S} [
e−S (b−a)

abN0

]1{xj≥T+S}

,

giving

log
J∏

j=1

f1(xj)
f2(xj)

=

J∑
j=1

1{T < xj ≤ T + S}
[
log

b
a

− (xj − T )
(b − a)
abN0

]

−

J∑
j=1

1{xj > T + S}
S(b − a)
abN0

.

Defining

ℓ1 =

J∑
j=1

1{xj ≤ T }, ℓ2 =

J∑
j=1

1{T < xj ≤ T + S},

ℓ3 =

J∑
j=1

1{xj ≥ T + S},

we have that log BF12 > 0 when
J∑

j=1

1{T < xj ≤ T + S}
[
log

b
a

− (xj − T )
(b − a)
abN0

]

>

J∑
j=1

1{xj > T + S}
S(b − a)
abN0

ℓ2

(
log

b
a

+ T
(b − a)
abN0

)
− ℓ3S

(b − a)
abN0

>
(b − a)
abN0

∑
j:xj∈[T ,T+S]

xj

ℓ2

(
abN0

a − b
log

a
b

+ T
)

− ℓ3S <
∑

j:xj∈[T ,T+S]

xj,

ℓ2 (δ + T ) − ℓ3S <
∑

j:xj∈[T ,T+S]

xj,

where the inequality reversed since (b − a)/(abN0) is negative.
Denote by L = (L1, L2, L3) the random vector whose observed

entries are ℓ = (ℓ1, ℓ2, ℓ3). Now, log BF12 = 0 only if xj < T for
all j = 1, . . . , J . In this case, we flip a fair coin and accept H1 if it
shows heads. Moreover, if L2 = 0 and L3 > 0, then log BF12 > 0.
Notice that for a generic coalescent time X

L | Hi ∼ Multinomial(J, p)
p1 = P[X ≤ T ] = (1 − e−Λ(T ))

p2 = P[T < X ≤ T + S] = (e−Λ(T )
− e−Λ(T )− S

aiN0 )

p3 = P[X > T + S] = e−Λ(T )− S
aiN0 ,

and we have

P[ϑ(X J ) = 1 | H1] =
1
2
P(L1 = J | H1) + P(L2 = 0, L3 > 0 | H1)

+

∑
(ℓ2,ℓ3):ℓ2>0

P(L = ℓ | H1)P(BF12(X J ) > 0 | L = ℓ,H1)

with

P[BF12(X J ) > 0 | L = ℓ,H1]

= P

⎡⎣ ∑
j:X j∈[T ,T+S]

X j > ℓ2(δ + T ) − ℓ3S
⏐⏐⏐⏐ L = ℓ

⎤⎦
= P

⎡⎣ ∑
j:X j∈[T ,T+S]

X j > ℓ2(δ + T ) − ℓ3S
⏐⏐⏐⏐ T < X j

≤ T + S

⎤⎦
= P

⎡⎣ ℓ2∑
j=1

X j
∗

> ℓ2δ − ℓ3S
⏐⏐⏐⏐ X j

∗
< S

⎤⎦
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for X j
∗ independent exponential random variables with rate

(aN0)−1. So letting W ∗(ℓ2) =
∑ℓ2

j=1 X
j
∗, the relevant probabilities

involve the CDF of the sum of ℓ2 many independent exponentials
with rate (aN0)−1 truncated to the interval [0, S], and we have

P[ϑ(X J ) = 1 | H1] =
1
2
P(L1 = J | H1) + P(L2 = 0, L3 > 0 | H1)

+

∑
(ℓ2,ℓ3):ℓ2>0

P(L = ℓ | H1)P[W ∗(ℓ2) > ℓ2δ − ℓ3S | H1].

It follows then that since P(L1 = J | H1) = P(L1 = J | H2), the
Bayes error rate can be written as

P[ϑ(X J ) = ϑ] =
1
2
P(L2 = 0 | H1) (C.1)

+
1
2

∑
(ℓ2,ℓ3):ℓ2>0

P(L = ℓ | H1)P[W ∗(ℓ2) > ℓ2δ − ℓ3S | H1]

+
1
2

∑
(ℓ2,ℓ3):ℓ2>0

P(L = ℓ | H2)P[W ∗(ℓ2) < ℓ2δ − ℓ3S | H2]. □

Appendix D. Proof of Theorem 5.1

Recall we are studying the case where H1 : N = N1(t) and
H2 : N = N2(t) and

N1(t) =

⎧⎨⎩
N(t) 0 ≤ t ≤ T
aN0 T ≤ t ≤ T + S
N(t) t > T + S

N2(t) =

⎧⎨⎩
N(t) 0 ≤ t ≤ T
bN0 T ≤ t ≤ T + S
N(t) t > T + S

for N(t) any bounded, strictly non-negative function.
1. Case 1: 0 < x2 < x1 < T . In this case the likelihood under

either H1 or H2 is the same

L(x2, x1 | N(t)) =
3

N(x2)N(x1)
e−2Λ(x2)−Λ(x1)

and so

log BF12(x) = 0.

2. Case 2: 0 < x2 < T < x1 < T + S. In this case the likelihood
under Hi is

L(x2, x1 | N(t)) =
3

N(x2)
1

aiN0
e−2Λ(x2)−Λ(T )− x1−T

aiN0

so designating a1 = a, a2 = b as before

log BF12(x) = log
b
a

−
x1 − T
aN0

+
x1 − T
bN0

= log
b
a

+
(a − b)(x1 − T )

abN0
.

3. Case 3: 0 < x2 < T < T + S < x1. In this case the likelihood
under Hi is

L(x2, x1 | N(t)) =
3

N(x2)
1

N(x1)
e−2Λ(x2)−Λ(T )− S

aiN0
−Λ(T+S,x1)

so

log BF12(x) =
S

bN0
−

S
aN0

=
(a − b)S
abN0

.

4. Case 4: 0 < T < x2 < x1 < T + S. In this case the likelihood
under Hi is

L(x2, x1 | N(t)) =
3

aiN0

1
aiN0

e−3Λ(T )− 3(x2−T )
aiN0

−
x1−x2
aiN0

=
3

a2i N
2
0
e−3Λ(T )e−

2x2+x1−3T
aiN0

so

log BF12(x) = 2 log
b
a

−
2x2 + x1 − 3T

aN0
+

2x2 + x1 − 3T
bN0

= 2 log
b
a

+
(a − b)(2x2 + x1 − 3T )

abN0

5. Case 5: 0 < T < x2 < T + S < x1. In this case the likelihood
under Hi is

L(x2, x1 | N(t))

=
3

aiN0

1
N(x1)

e−2Λ(T )− 2(x2−T )
aiN0

−Λ(T )− S
aiN0

−Λ(T+S,x1)

=
3

aiN0

1
N(x1)

e−3Λ(T )−Λ(T+S,x1)e−
2(x2−T )+S

aiN0

so

log BF12(x) = log
b
a

−
2(x2 − T ) + S

aN0
+

2(x2 − T ) + S
bN0

= log
b
a

+
(a − b)(2(x2 − T ) + S)

abN0

6. Case 6: 0 < T < T + S < x2 < x1. In this case the likelihood
under Hi is

L(x2, x1 | N(t))

=
3

N(x2)
1

N(x1)
e−2Λ(T )− 2S

aiN0
−2Λ(T+S,x2)−Λ(T )− S

aiN0
−Λ(T+S,x1)

=
3

N(x2)
1

N(x1)
e−3Λ(T )−2Λ(T+S,x2)−Λ(T+S,x1)e−

3S
aiN0

so

log BF12(x) = −
3S
aN0

+
3S
bN0

=
3(a − b)S

abN0

log BF12(x)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 < x2 < x1 < T

log b
a +

(a−b)(x1−T )
abN0

0 < x2 < T < x1 < T + S
(a−b)S
abN0

0 < x2 < T < T + S < x1

2 log b
a +

(a−b)(x1+2x2−3T )
abN0

0 < T < x2 < x1 < T + S

log b
a +

(a−b)(2x2−2T+S)
abN0

0 < T < x2 < T + S < x1
3(a−b)S
abN0

0 < T < T + S < x2 < x1

We go line by line calculating the components of P[ϑ(X) =

ϑ | H1]. Designate each of the six pieces of the expression by Qj,
j = 1, 2, . . . , 6.

Q1 =
1
2
P[X1 < T ] =

1
2

∫ T

0

∫ T

x2

3
N(x2)N(x1)

e−2Λ(x2)−Λ(x1)

=
1
2

∫ T

0
(e−Λ(x2) − e−Λ(T ))

3
N(x2)

e−2Λ(x2)dx2

=
1
2

∫ T

0

3
N(x2)

e−3Λ(x2)dx2 − e−Λ(T )
∫ T

0

3
N(x2)

e−2Λ(x2)dx2

=
1
2

(
1 − e−3Λ(T )

− e−Λ(T ) 3
2

∫ T

0

2
N1(x2)

e−2Λ(x2)dx2

)
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=
1
2

(
1 − e−3Λ(T )

− e−Λ(T ) 3
2
(1 − e−2Λ(T ))

)
=

1
2

+
1
4
e−3Λ(T )

−
3
4
e−Λ(T )

Now define

δ =
abN0

a − b
log

a
b

then we have

Q2 =

∫ T

0

∫ T+S

T

3
N(x2)N(x1)

e−2Λ(x2)−Λ(x1)

× 1
{
log

b
a

+
(a − b)(x1 − T )

abN0
> 0

}
dx1dx2

=

∫ T

0

∫ T+S

T+(δ∧S)

3
N(x2)N(x1)

e−2Λ(x2)−Λ(x1)dx1dx2

= (e−Λ(T )− δ∧S
aN0 − e−Λ(T )− S

aN0 )
3
2

∫ T

0

2
N(x2)

e−2Λ(x2)dx2

= (e−
δ∧S
aN0 − e−

S
aN0 )e−Λ(T ) 3

2
(1 − e−2Λ(T ))

For case 3

Q3 = 1{a > b}
∫ T

0

∫
∞

T+S

3
N(x2)N(x1)

e−2Λ(x2)−Λ(x1)dx1dx2

= 1{a > b}e−Λ(T )− S
aN0

3
2

∫ T

0

2
N(x2)

e−2Λ(x2)dx2

=
3
2
1{a > b}e−Λ(T )− S

aN0 (1 − e−2Λ(T ))

Case 4

Q4 =

∫ T+S

T

∫ T+S

x2

3
N(x2)N(x1)

e−2Λ(x2)−Λ(x1)

× 1 {x1 > T + 2(T − x2 + δ)} dx1dx2

=

∫ T+S

T

∫ T+S

x2

3
a2N2

0
e−3Λ(T )e−

2x2+x1−3T
aN0

× 1 {x1 > T + 2(T − x2 + δ)} dx1dx2.

The inequalities

0 < T < x2 < x1 < T + S, x1 > T + 2(T − x2 + δ)

reduce to
2δ
3

< S < 2δ,
1
3
(3T + 2δ) < x1 < S + T ,

1
2
(3T − x1 + 2δ) < x2 < x1

or

S > 2δ

and either
1
3
(3T + 2δ) < x1 < T + 2δ,

1
2
(3T − x1 + 2δ) < x2 < x1

or

T + 2δ < x1 < S + T , T < x2 < x1.

So then we can express Q4 as

Q4 =

⎧⎨⎩
0 S < 2

3δ

Q41
2
3δ < S < 2δ

Q42 S > 2δ

where

Q41 =

∫ T+S

1
3 (3T+2δ)

∫ x1

1
2 (3T−x1+2δ)

3
a2N2

0
e−3Λ(T )e−

2x2+x1−3T
aN0 dx2dx1

=
1
2
e−3Λ(T )

(
e−

3S
aN0 − e−

2δ
aN0

aN0 − 3S + 2δ
aN0

)
and

Q42 =

∫ T+2δ

1
3 (3T+2δ)

∫ x1

1
2 (3T−x1+2δ)

3
a2N2

0
e−3Λ(T )e−

2x2+x1−3T
aN0 dx2dx1

+

∫ T+S

T+2δ

∫ x1

T

3
a2N2

0
e−3Λ(T )e−

2x2+x1−3T
aN0 dx2dx1

=
1
2
e−3Λ(T )

(
e−

6δ
aN0 + e−

2δ
aN0

4δ − aN0

aN0

)
+

1
2
e−3Λ(T )

(
e−

3S
aN0 − 3e−

S
aN0 − e−

6δ
aN0 + 3e−

2δ
aN0

)
=

(
1
2
e−3Λ(T )

(
e−

2δ
aN0

(
4δ
aN0

+ 2
)

+ e−
3S
aN0 − 3e−

S
aN0

))
And now for case 5

Q5 =

∫ T+S

T

∫
∞

T+S
f1(x1, x2)1

{
log

b
a

+
(a − b)(2(x2 − T ) + S)

abN0
> 0

}
dx1dx2

=

∫ T+S

T

∫
∞

T+S

3
N(x2)N(x1)

e−2Λ(x2)−Λ(x1)

× 1
{
x2 > T +

δ

2
−

S
2

}
dx1dx2

=

∫ T+S

T+{0∨(( δ
2 −

S
2 )∧S)}

3
N(x2)

e−2Λ(x2)dx2

∫
∞

T+S

1
N(x1)

e−Λ(x1)dx1

=
3
2
e−Λ(T )− S

aN0

∫ T+S

T+{0∨(( δ
2 −

S
2 )∧S)}

2
N(x2)

e−2Λ(x2)dx2

=
3
2
e−Λ(T )− S

aN0 (e−2Λ(T+{0∨(( δ
2 −

S
2 )∧S)})

− e−2Λ(T+S))

=
3
2
e−3Λ(T )− S

aN0 (e−
2{0∨(( δ

2 −
S
2 )∧S)}

aN0 − e−
2S
aN0 )

Finally case 6

Q6 = 1{a > b}
∫

∞

T+S

∫
∞

x2

3
N(x2)

1
N(x1)

e−2Λ(x2)−Λ(x1)dx1dx2

= 1{a > b}
∫

∞

T+S

3
N(x2)

e−3Λ(x2)dx2

= 1{a > b}e−3Λ(T )− 3S
aN0

Now we can get the other component fairly easily. We repeat
the calculations conditioning on H2

Q1 =
1
2

(
1 +

1
2
e−3Λ(T )

−
3
2
e−Λ(T )

)
case 2

Q2 =

∫ T

0

∫ T+S

T

3
N(x2)N(x1)

e−2Λ(x2)−Λ(x1)1
{
log

b
a

× +
(a − b)(x1 − T )

abN0
< 0

}
dx1dx2

=

∫ T

0

∫ T+(δ∧S)

T

3
N(x2)N(x1)

e−2Λ(x2)−Λ(x1)dx1dx2
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= (e−Λ(T )
− e−Λ(T )− δ∧S

bN0 )
3
2

∫ T

0

2
N(x2)

e−2Λ(x2)dx2

= (1 − e−
δ∧S
bN0 )e−Λ(T ) 3

2
(1 − e−2Λ(T ))

For case 3

Q3 = 1{b > a}
∫ T

0

∫
∞

T+S

3
N(x2)N(x1)

e−2Λ(x2)−Λ(x1)dx1dx2

= 0

Case 4

Q4 =

∫ T+S

T

∫ T+S

x2

3
N(x2)N(x1)

e−2Λ(x2)−Λ(x1)

× 1 {x1 < T + 2(T − x2 + δ)} dx1dx2

=

∫ T+S

T

∫ T+S

x2

3
b2N2

0
e−3Λ(T )e−

2x2+x1−3T
bN0

× 1 {x1 < T + 2(T − x2 + δ)} dx1dx2.

The inequalities

0 ≤ T ≤ x2 ≤ x1 ≤ T + S, x1 ≤ T + 2(T − x2 + δ), δ > 0

reduce to

0 ≤ S ≤
2δ
3

, T ≤ x1 ≤ S + T , T ≤ x2 ≤ x1, or

2δ
3

≤ S ≤ 2δ,{
T < x1 ≤

1
3 (3T + 2δ), T ≤ x2 ≤ x1 or

1
3 (3T + 2δ), ≤ x1 ≤ T + S T ≤ x2 ≤

1
2 (3T − x1 + 2δ)

or

S > 2δ,{
T < x1 < 1

3 (3T + 2δ), T < x2 < x1or
1
3 (3T + 2δ) ≤ x1 ≤ T + 2δ, T < x2 ≤

1
2 (3T − x1 + 2δ)

so

Q4 =

⎧⎨⎩
Q41 0 ≤ S ≤

2δ
3

Q42
2δ
3 ≤ S ≤ 2δ

Q43 S > 2δ,

where

Q41 =
1
2
e−3Λ(T )

(
e−

3S
bN0 − 3e−

S
bN0 + 2

)

Q42 =
1
2
e−3Λ(T )

⎛⎝ e−
2δ
bN0 (bN0 + 2δ − 3S)

bN0
− 3e−

S
bN0 + 2

⎞⎠
Q43 =

1
2bN0

e−3Λ(T )e−
2δ+S
bN0

(
bN0

(
2e

2δ+S
bN0

+e
S

bN0 − 3e
T

bN0

)
+ e

S
bN0 (−4δ − 3S + 3T )

)
Case 5

Q5 =

∫ T+S

T

∫
∞

T+S
f1(x1, x2)

× 1
{
log

b
a

+
(a − b)(2(x2 − T ) + S)

abN0
< 0

}
dx1dx2

=

∫ T+S

T

∫
∞

T+S

3
N(x2)N(x1)

e−2Λ(x2)−Λ(x1)

× 1
{
x2 < T +

δ

2
−

S
2

}
dx1dx2

=

∫ T+{0∨(( δ
2 −

S
2 )∧S)}

T

3
N(x2)

e−2Λ(x2)dx2

∫
∞

T+S

1
N(x1)

e−Λ(x1)dx1

=
3
2
e−Λ(T )− S

bN0

∫ T+{0∨(( δ
2 −

S
2 )∧S)}

T

2
N(x2)

e−2Λ(x2)dx2

=
3
2
e−Λ(T )− S

bN0 (e−2Λ(T )
− e−2Λ(T+{0∨(( δ

2 −
S
2 )∧S)}))

=
3
2
e−3Λ(T )− S

bN0 (1 − e−
2{0∨(( δ

2 −
S
2 )∧S)}

bN0 )

Case 6

Q6 = 1{b > a}
∫

∞

T+S

∫
∞

x2

3
N(x2)

1
N(x1)

e−2Λ(x2)−Λ(x1)dx1dx2

= 0

Appendix E. Proof of Theorem 6.1

Proof. Define Λi(t) =
∫ t
0

1
Ni(s)

ds, we then have

P[ϑ(X) = 1 | H1] =

∫
∞

0
1
{(

1
c

− 1
)

Λ1(x) > log
1
c

}
×

1
N1(x)

e−
∫ x
0

1
N1(t)

dtdx

= P
[
X > Λ−1

1

(
c

1 − c
log

1
c

)
| H1

]
= e−Λ1

(
Λ

−1
1

(
c

1−c log 1
c

))
= e

c log c
1−c

= c
c

1−c ,

which implicitly assumed that c < 1. Similarly

P[ϑ(X) = 2 | H2]

=

∫
∞

0
1
{
Λ2(x) − Λ1(x) < log

N1(x)
N2(x)

}
×

1
N2(x)

e−
∫ x
0

1
N2(t)

dtdx

=

∫
∞

0
1 {Λ2(x)(c − 1) > log c}

1
N2(x)

e−
∫ x
0

1
N2(t)

dtdx

= P
[
X < Λ−1

2

(
1

c − 1
log c

)
| H2

]
= 1 − e−Λ2

(
Λ

−1
2

(
1

c−1 log c
))

= 1 − c
1

1−c

so then

P[ϑ(X) = ϑ] =
1
2
c

c
1−c +

1
2

(
1 − c

1
1−c

)
. □

Appendix F. Proof of Theorem 6.2

Proof. Define Λi(t) =
∫ t
0

1
Ni(s)

ds and notice that

BF12 =

J∏
j=1

1
N1(xj)

e−
∫ xj
0

1
N1(t)

dt

1
N2(xj)

e−
∫ xj
0

1
N2(t)

dt
=

J∏
j=1

N2(xj)e
−
∫ xj
0

1
N1(t)

dt

N1(xj)e
−
∫ xj
0

1
N2(t)

dt

= c Je−
∑J

j=1 Λ1(xj)−Λ2(xj) = c Je−
∑J

j=1 Λ1(xj)
(
1− 1

c

)

log BF12 = J log c −

(
1 −

1
c

) J∑
j=1

Λ1(xj)
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so then

P [log BF12 > 0 | H1] = P

⎡⎣J log c >

(
1 −

1
c

) J∑
j=1

Λ1(X j) | H1

⎤⎦
= P

⎡⎣(1
c

− 1
) J∑

j=1

Λ1(X j) > J log
1
c

| H1

⎤⎦
= P

⎡⎣ J∑
j=1

Λ1(X j) > J
c

1 − c
log

1
c

| H1

⎤⎦ .

Since

P[Λ1(X) > s | H1] = P[X > Λ−1
1 (s)] = e−s,

we have

P [log BF12 > 0 | H1] = P
[
W > J

c
1 − c

log
1
c

]
,

where W is the sum of J independent unit rate exponentials, so
W ∼ Gamma(J, 1) and

P [log BF12 > 0 | H1] = 1 −
1

Γ (J)
γ

(
J, J

c
1 − c

log
1
c

)
,

where γ (α, β) is the lower incomplete Gamma function. Similar
calculations give us that

P [log BF12 < 0 | H2] = P

⎡⎣J log c < (c − 1)
J∑

j=1

Λ2(X j) | H2

⎤⎦
= P

[ J∑
i=1

Λ2(X j) < J
1

c − 1
log c | H2

]

= P
[
W < J

1
c − 1

log c
]

=
1

Γ (J)
γ

(
J, J

1
c − 1

log c
)

giving us

P[ϑ(X J ) = ϑ] =
1
2

(
1 −

1
Γ (J)

γ

(
J, J

c
1 − c

log
1
c

)
+

1
Γ (J)

γ

(
J, J

1
c − 1

log c
))

, □

as claimed.

Appendix G. Proof of Theorem 7.1

Proof. The log Bayes factor under the stationary distribution is

log BFπ
12 = 2 log(c) +

(1 − c)x
Nc

,

then

Pπ [ϑ(X) = 1 | H1] = Pπ

[
X >

2Nc
1 − c

log
1
c

| H1

]
=

∫
∞

2Nc
1−c log 1

c

x
N2 e

−
x
N dx

= c
2c
1−c −

2
1 − c

c
1+c
1−c log(c),

for 0 < c < 1. Similarly

Pπ [ϑ(X) = 2 | H2] = Pπ

[
X <

2Nc
1 − c

log
1
c

| H2

]
=

∫ 2Nc
1−c log 1

c

0

x
c2N2 e

−
x
cN dx

= 1 − c
2

1−c

(
1 −

2
1 − c

log c
)

so then

Pπ [ϑ(X) = ϑ] =
1
2
c

2c
1−c +

1
2

(
1 − c

2
1−c

)
− c

1+c
1−c log c. □

Appendix H. Proof of Theorem 7.2

Proof. Consider J independent loci, then

BFπ
12 =

J∏
j=1

xj

N2 e
−

xj
N

xj
c2N2 e

−
xj
cN

= c2Je
(
1−c
cN

)∑J
j=1 xj

log BFπ
12 = 2J log c +

(
1 − c
cN

) J∑
j=1

xj

Note that when the effective population size is constant N , the
stationary density is Gammawith shape parameter α = 2 and rate
parameterβ = 1/N , and the sumof J independentGamma random
variables with parameters αj and β = 1/N , j = 1, . . . , J is Gamma
with parameters α =

∑J
j=1 αj = 2J and β = 1/N , then

Pπ

[
log BFπ

12 > 0 | H1
]

= Pπ

⎡⎣ J∑
j=1

X j > 2J
cN

1 − c
log

1
c

| H1

⎤⎦ .

Then,

Pπ

[
log BFπ

12 > 0 | H1
]

= 1 −
1

Γ (2J)
γ

(
2J, 2J

c
1 − c

log
1
c

)
,

where γ (α, β) is the lower incomplete Gamma function. Similar
calculations give us that and

Pπ

[
log BFπ

12 < 0 | H2
]

= Pπ

⎡⎣ J∑
j=1

X j < 2J
cN

1 − c
log

1
c

| H2

⎤⎦
=

1
Γ (2J)

γ

(
2J, 2J

1
1 − c

log
1
c

)
,

giving us

Pπ [ϑ(X J ) = ϑ] =
1
2

(
1 −

1
Γ (2J)

γ

(
2J, 2J

c
1 − c

log
1
c

)
+

1
Γ (2J)

γ

(
2J, 2J

1
c − 1

log c
))

, □

as claimed.

Appendix I. Derivation of Eq. (9.2)

Begin by expanding the square in (9.1)∫
∞

0

(
(1 + J)2

(1 + z)2
− 2c

1 + J
1 + z

+ c2
)

c J

Γ (J)
z J−1e−czdz
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and perform the integration for each term separately. We have∫
∞

0

(1 + J)2

(1 + z)2
c J

Γ (J)
z J−1e−czdz = c J (J + 1)2Ψ (J, J − 1, c)

−2c
∫

∞

0

1 + J
1 + z

c J

Γ (J)
z J−1e−czdz = −2(J + 1)c J+1Ψ (J, J, c)

c2
∫

∞

0

c J

Γ (J)
z J−1e−czdz = c2.

So we get∫
∞

0

(
1 + J
1 + z

− c
)2 c J

Γ (J)
z J−1e−czdz

= c J (J + 1)2Ψ (J, J − 1, c) − 2(J + 1)c J+1Ψ (J, J, c) + c2. (I.1)

Appendix J. Proof of Theorem 8.1

We have

fi(x) =

⎧⎪⎪⎨⎪⎪⎩
1

N(x) e
−
∫ x
0

1
N(t) dt x < T

1
aiN0

e−
∫ T
0

1
N(t) dte−

x−T
aiN0 T ≤ x < T + S

1
N(x) e

−
∫ T
0

1
N(t) dte−

S
aiN0 e−

∫ x
T+S

1
N(t) dt T + S ≤ x

(J.1)

where fi(x) is the density of a single coalescent time under Hi.
Define

∆12(x) ≡ (
√
f1(x) −

√
f2(x))2.

So now we calculate∫
(
√
f1(x) −

√
f2(x))2dx =

∫ T

0
∆12(x)dx +

∫ T+S

T
∆12(x)dx

+

∫
∞

T+S
∆12(x)dx

clearly the first term on the right is zero so∫
∆12(x)dx =

∫ T+S

T
∆12(x)dx +

∫
∞

T+S
∆12(x)dx.

Observe∫ T+S

T
∆12(x)dx =

∫ T+S

T

(
1

√
aN0

e−
1
2
∫ T
0

1
N(t) dte−

1
2

x−T
aN0

−
1

√
bN0

e−
1
2
∫ T
0

1
N(t) dte−

1
2

x−T
bN0

)2

dx

= e−
∫ T
0

1
N(t) dt

∫ T+S

T

(
1

√
aN0

e−
1
2

x−T
aN0 −

1
√
bN0

e−
1
2

x−T
bN0

)2

dx,

then

e
∫ T
0

1
N(t) dt

∫ T+S

T
∆12(x)dx = 2−e−

S
aN0 −e−

S
bN0 −

4b(1 − e−
(a+b)S
2abN0 )

√
a

(a + b)
√
b

,

(J.2)

and now∫
∞

T+S
∆12(x)dx =

∫
∞

T+S

(
1

√
N(x)

e−
1
2
∫ T
0

1
N(t) dte−

1
2

S
aN0 e−

1
2
∫ x
T+S

1
N(t) dt

−
1

√
N(x)

e−
1
2
∫ T
0

1
N(t) dte−

1
2

S
bN0 e−

1
2
∫ x
T+S

1
N(t) dt

)2

dx

=

∫ (
e−

1
2

S
aN0 − e−

1
2

S
bN0

)2 ( 1
√
N(x)

e−
1
2
∫ T
0

1
N(t) dte−

1
2
∫ x
T+S

1
N(t) dt

)2

dx

=

(
e−

1
2

S
aN0 − e−

1
2

S
bN0

)2

e−
∫ T
0

1
N(t) dt

∫
∞

T+S

1
N(x)

e−
∫ x
T+S

1
N(t) dtdx

=

(
e−

1
2

S
aN0 − e−

1
2

S
bN0

)2

e−
∫ T
0

1
N(t) dt

(
−e−

∫ x
T+S

1
N(t) dt

⏐⏐⏐⏐∞
T+S

)
=

(
e−

1
2

S
aN0 − e−

1
2

S
bN0

)2

e−
∫ T
0

1
N(t) dt

and adding this to (J.2)

H2(f1, f2) =

∫
∆12(x)dx

= e−
∫ T
0

1
N(t) dt

(
1 − e−

(a+b)S
2abN0

)
(a + b − 2

√
ab)

a + b

= e−
∫ T
0

1
N(t) dt

(
1 − e−

(a+b)S
2abN0

)
(
√
a −

√
b)2

a + b
, (J.3)

which is the same as the last displayed equation onKimet al. (2015,
p 11).

Appendix K. Bounds on total variation between product mea-
sures

Let P J ,Q J be product measures on a space X = ×
J

j=1
Xj of

dimension J . Suppose P J ,Q J are absolutely continuouswith respect
to some dominating measure ν on X, and write the densities with
respect to ν as pJ (x) =

dP J
dν (x), qJ (x) =

dQ J

dν (x), respectively. Notice
we can write pJ (x) =

∏J
j=1 p(xj) for some density on X1, and

similarly for qJ . Then the total variation distance can be expressed
as

dTV(P J ,Q J ) =

∫
X
|pJ (x) − qJ (x)|dx

=

∫
X

⏐⏐⏐⏐⏐⏐
J∏

j=1

p(xj) −

J∏
j=1

q(xj)

⏐⏐⏐⏐⏐⏐ dx
=

∫
X

⏐⏐⏐⏐⏐⏐p(x1)
J∏

j=2

p(xj) − q(x1)
J∏

j=2

p(xj)

+ q(x1)
J∏

j=2

p(xj) − q(x1)
J∏

j=2

q(xj)

⏐⏐⏐⏐⏐⏐ dx
≤

∫
X
|p(x1) − q(x1)|

J∏
j=2

p(xj)dx

+

∫
X
q(x1)

⏐⏐⏐⏐⏐⏐
J∏

j=2

p(xj) −

J∏
j=2

q(xj)

⏐⏐⏐⏐⏐⏐ dx
=

∫
X1

|p(x1) − q(x1)|dx1 +

∫
X−1

⏐⏐⏐⏐⏐⏐
J∏

j=2

p(xj) −

J∏
j=2

q(xj)

⏐⏐⏐⏐⏐⏐ dx−1

= dTV(P,Q ) +

∫
X−1

⏐⏐⏐⏐⏐⏐
J∏

j=2

p(xj) −

J∏
j=2

q(xj)

⏐⏐⏐⏐⏐⏐ dx−1

where X−1 denotes the (J − 1) dimensional subspace correspond-
ing to the coordinates (x2, x3, . . . , xJ ). Now an obvious inductive
argument gives

dTV(P J ,Q J ) ≤ JdTV(P,Q ).

To obtain the other inequality, use the general double-sided bound
for any measures µ1, µ2

H2(µ1, µ2) ≤ dTV(µ1, µ2) ≤
√
2H(µ1, µ2). (K.1)
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Using the inequality (8.1)

dTV(P J ,Q J ) ≤
√
2
√
JH(P,Q )

and now using the lower bound in (K.1)

H2(P,Q ) ≤ dTV(P,Q ) H⇒ H(P,Q ) ≤

√
dTV(P,Q )

so

dTV(P J ,Q J ) ≤

√
2J
√
dTV(P,Q ).
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